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Estimation of the poroelastic parameters of cortical bone
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Abstract

Cortical bone has two systems of interconnected channels. The largest of these is the vascular porosity consisting of Haversian

and Volkmann’s canals, with a diameter of about 50mm, which contains a.o. blood vessels and nerves. The smaller is the system

consisting of the canaliculi and lacunae: the canaliculi are at the submicron level and house the protrusions of the osteocytes. When

bone is differentially loaded, fluids within the solid matrix sustain a pressure gradient that drives a flow. It is generally assumed that

the flow of extracellular fluid around osteocytes plays an important role not only in the nutrition of these cells, but also in the bone’s

mechanosensory system.

The interaction between the deformation of the bone matrix and the flow of fluid can be modelled using Biot’s theory of

poroelasticity. However, due to the inhomogeneity of the bone matrix and the scale of the porosities, it is not possible to

experimentally determine all the parameters that are needed for numerical implementation. The purpose of this paper is to derive

these parameters using composite modelling and experimental data from literature. A full set of constants is estimated for a linear

isotropic description of cortical bone as a two-level porous medium. Bone, however, has a wide variety of mechanical and structural

properties; with the theoretical relationships described in this note, poroelastic parameters can be derived for other bone types using

their specific experimental data sets. r 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Cortical bone contains a hierarchical structure of
interconnected channels (Gray’s Anatomy, 1996). At the
highest level, Haversian and Volkmann’s canals with a
diameter of about 50 mm house (a.o.) blood vessels and
nerves. Canaliculi are two orders of magnitude smaller
and contain the osteocytic protrusions. Being open to
the vascular canals, canaliculi form a passage for
nutrients and other molecules travelling to and from
the osteocytes. Mechanical loading enhances the ex-
change of molecules by driving the free fluid in and out
(Piekarski and Munro, 1977; Wang et al., 2000). Fluid
flow has also been suggested to play a role in the
mechanosensory system of bone (Weinbaum et al, 1991;
Cowin et al., 1995; Burger et al., 1998): osteocytes
thereby would be stimulated by fluid shear stress and

subsequently produce signalling molecules directing the
osteoclasts and osteoblasts at the bone surface. A better
understanding of this mechanism is important for bone-
related clinical problems such as osteoporosis and the
fixation of implants.
The relation between matrix deformation and fluid

flow can be described by Biot’s theory of poroelasticity
(Biot, 1941, 1955). The kinematic quantities in this
approach are displacement vector ui; tracking the
movement of the porous solid, and vector qi; describing
the flux of fluid mass. The field variables are total stress
sij ; strain in the solid phase eij ; fluid (pore) pressure p;
and specific fluid volume z: Strain quantities eij and z are
related to the displacement quantities ui and qi accord-
ing to

eij ¼ 1
2
ðui; j þ uj;iÞ ð1Þ

and the fluid mass balance

qz
qt

¼ qk;k; ð2Þ
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where t represents time. Darcy’s law relates mass flux qi

to the gradient of pore pressure p:

qi ¼ �kpdij ; ð3Þ

where k is the hydraulic permeability coefficient. k is
further defined by k ¼ k=m; with k being the intrinsic
permeability and m the fluid’s dynamic viscosity. k is a
function of the pore geometry, more particularly the
connectedness of the porosity j and the size and spatial
arrangement of the pores.
Biot’s theory further includes constitutive equations

of the solid structure. Although bone is anisotropic with
respect to its elastic moduli and permeability, both are
considered isotropic here, because the anisotropic
poroelastic bone constants have not yet been deter-
mined, and bones and osteons are almost isotropic in
their transverse planes, which is where fluid flow mainly
occurs. To describe the poroelastic problem, the stress–
strain relations of the theory of elasticity are extended
with the pressure component (Biot, 1941):

sij þ apdij ¼ 2Gdeij þ
2Gdnd
1� 2nd

� �
ekkdij ; ð4Þ

where Gd and nd are the drained shear modulus and
Poisson’s ratio of the solid, and a the Biot effective stress
coefficient. For an ideal isotropic poroelastic material,

a ¼ 1�
Kd

Ks
ð5Þ

with Kd being the drained bulk modulus of the material,
and Ks that of the solid matrix (Detournay and Cheng,
1993). The constitutive relation between the variation of
the fluid content z and stress is described by

2Gdz ¼ a
1� 2nd
1þ nd

� �
skk þ

3p

B

� �
; ð6Þ

where B is the compressibility or Skempton pore
pressure coefficient (Cowin, 1999). B is defined by

(Detournay and Cheng, 1993)

B ¼
aKf

a� jð1� aÞ½ �Kf þ jKd
; ð7Þ

where j is the pore volume fraction and Kf the fluid
bulk modulus.
The mechanical behaviour of a fluid-saturated med-

ium is completely described by Eqs. (1)–(7). For their
application to cortical bone, parameters must be
quantified that describe the linear-elastic behaviour of
bone (any two of Ed; nd; Gd; and Kd), the porosity ðjÞ;
the compressibility of the fluid phase and the solid phase
(Ks and Kf ), and hydraulic permeability k: Except for j
and Kf (taken from the literature), these parameters are
derived below for both levels of porosity.

2. The isotropic elastic material parameters

Cortical bone has two levels of interconnected
channels. First, the vascular level porosity (diameter
B50 mm; subscript v) consisting of the space occupied
by the bone fluid in the Haversian and Volkmann
canals. Second, the lacuno-canalicular level porosity
(diameter o0:5 mm; subscript lc) containing the osteo-
cytes and extracellular bone fluid. As it is not possible to
experimentally determine the elastic material constants
of the solid matrix at these levels, a theoretical approach
is presented, based on experimental data taken from
literature. For reasons given earlier, the approach is
limited to isotropic conditions.
Cowin and Sadegh (1991) constructed a set of

effective isotropic elastic constants for human cortical
bone, based on experimental orthotropic data from
Ashman et al. (1984). It is assumed here that the
vascular pores were no longer saturated, so the fluid
pressure is zero. Consequently, the effective elastic

Nomenclature

B Skempton pore pressure coefficient
E Young’s modulus
G shear modulus
K bulk modulus
k intrinsic (geometric) permeability
p pore pressure
q fluid flow
t time
u displacement of the solid
a Biot effective stress coefficient
e strain
j pore volume fraction
k hydraulic permeability, equal to k=m
m dynamic fluid viscosity

s stress
tr relaxation time
n Poisson’s ratio
z variation of unstrained fluid volume per unit

volume of the porous material (fluid content)

Subscripts

i; j; k components of the tensors in the field equa-
tions

d drained situation
u undrained situation
lc lacuno-canalicular level
v vascular level
f fluid phase
s solid phase
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constants are the drained elastic moduli at the vas-
cular level: Kd;v ¼ 13:92GPa, Gd;v ¼ 5:50GPa, Ed;v ¼
14:58GPa, and nd;v ¼ 0:325 (Table 1). The vascular
porosity jv ¼ 0:04 (Zhang et al., 1998).
The theory of composite materials (Christensen, 1979)

provides equations relating effective elastic constants of
porous materials to the size and distribution of the pores
and the elastic properties of the matrix material. The
following relationships between the drained moduli (Kd;v

and Gd;v) and the solid phase moduli (Ks;v; Gs;v) are
applications of equations in Christensen (1979) for
spherical voids:

Kd;v ¼ Ks;v �
Ks;vj

1� Ks;v=ðKs;v þ ð4=3ÞGs;vÞ
ð8Þ

and

Gd;v

Gs;v
¼ 1�

15ð1� ns;vÞj
7� 5ns;v

: ð9Þ

Further, for all isotropic linear elastic materials,

Ks;v

Gs;v
¼

2ð1þ ns;vÞ
3ð1� 2ns;vÞ

: ð10Þ

Using (8)–(10), the unknowns Ks;v; Gs;v and ns;v; as
well as Es;v are determined: Ks;v ¼ 15:82GPa;
Gs;v ¼ 5:94GPa; ns;v ¼ 0:333; and Es;v ¼ 15:85GPa
(Table 1).
The elastic constants of the porous bone material at

the lacuno-canalicular level can be determined similarly.
As the experiments by Ashman et al. (1984) were
performed with ultrasound (2.25MHz), and the relaxa-
tion time of the lacuno-canalicular fluid pressure is of
the order of 0.1–3.0 s (Pienkowski and Pollack, 1983;
Otter et al., 1992), the porous structure is now
considered undrained. Consequently, the undrained
elastic moduli for the porous medium at the lacuno-
canalicular level equals the elastic moduli for the solid
material at the vascular level (Ku;lc ¼ Ks;v; Gu;lc ¼ Gs;v;
nu;lc ¼ ns;v; Eu;lc ¼ Es;v). Detournay and Cheng (1993)
give the following relationships between undrained,
drained and solid elastic moduli:

Ku ¼ Kd 1þ
ð1� Kd=KsÞ

2

Kd=Ks 1� Kd=Ks

� �
þ jðKd=Kf � Kd=KsÞ

" #

ð11Þ

and

nu ¼
3Ku � 2Gd

2ð3Ku þ GdÞ
: ð12Þ

Combining (11) with (8), and (12) with (9) and (10), two
expressions for Ku are obtained with two unknowns, Ks

and ns: With jlc ¼ 0:05 (Zhang et al., 1998), the elastic
moduli for the solid material at the lacuno-canalicular
level are: Ks;lc ¼ 17:66GPa; Gs;lc ¼ 6:56GPa; ns;lc ¼
0:335; and Es;lc ¼ 17:51GPa. Using (8)–(10), the drained
elastic moduli become: Kd;lc ¼ 14:99GPa; Gd;lc ¼
5:94GPa; nd;lc ¼ 0:325; and Ed;lc ¼ 15:75GPa. Note that
the solid moduli are higher at levels of lower porosity:
Ks;boneoKs;voKs;lc:
Many other parameters can be used to describe the

poroelastic problem, such as the effective stress coeffi-
cient a (Nur and Byerlee, 1971). Also, the Skempton
pore pressure coefficient B and the undrained elastic
material properties can be calculated if a value for the
bulk modulus of the contents of the porosities is
assumed (Detournay and Cheng, 1993). Table 1 gives
a summary of these.

3. The hydraulic permeability of the lacuno-canalicular

network

In porous media, fluid flow depends on the pressure
gradient, fluid viscosity m; and the structure of the
porosity, expressed as intrinsic permeability k: k

depends on the number, orientation and size of the
canaliculi, as well as on the amount of filling by
osteocytes and their processes. These parameters are

Table 1

Summary of the isotropic elastic constants for cortical bone on two

levels of porositya

Property (units, if any) Vascular

level

Lacuno-

canalicular

level

j; porosity 0.04 0.05

Kf (GPa), bulk modulus of fluid 2.3 2.3

Ed (GPa), drained Young’s

modulus

14.58 15.75

nd; drained Poisson’s ratio 0.325 0.325

Gd (GPa), drained shear modulus 5.50 5.94

Kd (GPa), drained bulk modulus 13.92 14.99

Es (GPa), solid Young’s modulus 15.85 17.51

ns; solid Poisson’s ratio 0.333 0.335

Gs (GPa), solid shear modulus 5.94 6.56

Ks (Gpa), solid bulk modulus 15.82 17.66

Eu (GPa), undrained Young’s

modulus

14.65 15.85

nu; undrained Poisson’s ratio 0.332 0.333

Gu (GPa), undrained shear

modulus

5.50 5.94

Ku (GPa), undrained bulk modulus 14.56 15.82

a; effective stress coefficient 0.120 0.151

B; Skempton pore pressure

coefficient

0.367 0.344

aThe values in italic were taken from Cowin (1999). The other elastic

constants have been calculated from Eqs. (8)–(12). The expressions for

a and B can be found in Detournay and Cheng (1993), p. 121 and 118,

respectively.
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very difficult to determine, leading to estimations of
permeability k ranging over several orders of magnitude
(Wang et al., 1999). Therefore, a more direct approach is
chosen to estimate the hydraulic permeability k; which
includes both the intrinsic (geometrical) permeability k

and the fluid viscosity m ðk ¼ k=mÞ:
In a porous structure loaded by a step-function, fluid

is pressurised at t ¼ 0; and then relaxes due to drainage;
in osteonic bone, extracellular fluid drains into the
Haversian canals (Starckebaum et al., 1979; Iannacone
et al., 1979). The relaxation curve is basically a function
of the osteonic dimensions; the material properties of
the solid bone matrix and the extracellular fluid; the
porosity of the bone matrix; and the hydraulic perme-
ability of the system. Except for the hydraulic perme-
ability, all these parameters can be estimated using data
from the literature or Section 2. Hydraulic permeability
then can be estimated with the use of a finite element
model of an osteon, by relating the calculated step
response with an experimentally determined relaxation
curve. For this study, we compare with the relaxation
curve of streaming potentials recorded in vivo in a dog
femur (Otter et al., 1992) (Fig. 1).
An axisymmetric finite element model of an osteon

was built with an inner and outer radii of 12.5 and
80 mm, respectively. These are characteristic dimensions
of an osteon in a dog’s femur (Jowsey, 1966). The finite
element code DIANA (TNO, The Netherlands) requires
the drained Young’s modulus (Ed;lc ¼ 15:75GPa) and
Poisson’s ratio ðnd;lc ¼ 0:325Þ; the lacuno-canalicular
bone porosity (jlc ¼ 0:05; Zhang et al., 1998); the bulk
moduli of the solid matrix (Ks;lc ¼ 17:66GPa) and the
extracellular fluid (Kf ¼ 2:3GPa; Anderson, 1967); and
the hydraulic permeability, the value of which is to be
determined.
Based on experiments by Starckebaum et al. (1979),

Iannacone et al. (1979) and Otter et al. (1994), it is
assumed that every osteon is a draining system on its
own. Consequently, the outer boundary is considered

impermeable. The cylinder is further considered to be
infinitely long, so only the surface of the Haversian
canal is open for drainage. The reference pressure within
the channel was set to zero (Cowin, 1999), and an axial
compressive step load was applied resulting in a
deformation of 1000 mstrain. The model was analysed
with k ¼ 10�6 mm4/N s, k ¼ 10�7 mm4/N s, and k ¼
10�8 mm4/N s. The estimation was subsequently refined
in analyses with intermediate values. As drainage of
bone fluid is considered to occur exclusively through the
lacuno-canalicular network into the Haversian canal,
the relaxation of the streaming potential determined by
Otter et al. is proportional to the relaxation of the
pressure gradient over the osteonic wall.
Fig. 2 shows the normalised pressure drop, with unity

at t ¼ 0:1 s. Note that the experimentally determined
relaxation curve by Otter et al. has an offset of B7 mV
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Fig. 1. Relaxation curve of the streaming potentials after step loading

recorded in a dog’s femur in vivo. Adapted from Otter et al. (1992).
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Fig. 2. (a) Relaxation of the normalised pressure difference between

the inner and outer osteon border for different values of the hydraulic

permeability k: The experimental relaxation curve by Otter et al. runs

between the curves for k ¼ 10�6 and 10�7 mm4/N s. (b) Further

refinement results in an estimation of the hydraulic permeability

k ¼ 2:2� 10�7 mm4/N s.
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(Fig. 1); as no rheological reason exists for this thresh-
old, this value is considered as a zeroing error, and
subtracted from the normalised curve. Fig. 2a shows the
experimental curve between the numerical curves for
k ¼ 10�6 and 10�7 mm4/N s. Further refinement results
in an estimation of k ¼ 2:2� 10�7 mm4/N s (Fig. 2b).
On a logarithmic (ln) scale, relaxation is described by an
almost straight line, which is well approximated by a
normalised negative e-power with time constant
tr ¼ 0:85 s (Fig. 3a). However, the slope of the logarith-
mic relaxation function shows that there is not one
single time constant, but—at least within the time frame
up to 2 s—a shifting time constant (Fig. 3b). Kufahl and
Saha (1990) explained this phenomenon by assuming
that the deeper parts of the osteon relax more slowly
than the superficial parts of the bone, which we found in
our model as well (Fig. 4). The question of biphasic
relaxation curve in pore fluid pressure is also measured
and discussed in the work of Qin et al. (2001, 2002).

4. Discussion

The parameters for a double porosity isotropic Biot
model of cortical bone were estimated using composite
modelling and experimental data from literature. The
theoretical part is based on the theory of poroelasticity
(Biot, 1941; Detournay and Cheng, 1993), and contains
two assumptions that have to be considered.
First, the two porosity levels in cortical bone are

considered to act independently, because the pressure
relaxation times differ by four orders of magnitude. This
means that it is reasonable to assume that the bone
matrix with the lacuno-canalicular network can be
considered solid for the short time scale behaviour of
the vascular porosity, and the pressure in the vascular
porosity does not interfere with the fluid flow within the
lacuno-canalicular network. The relaxation of the
streaming potentials measured by Otter et al. (1992) is
assumed to originate from the lacuno-canalicular net-
work only, as the pressure within the vascular porosities
must be completely relaxed after about 100 ms.
The second assumption is isotropy. For the elasticity

parameters, this is justified even for lamellar bone
(Cowin and Sadegh, 1991), but permeability must differ
considerably between longitudinal and radial directions;
transverse and longitudinal sections of lamellar cortical
bone give the impression that canaliculi mainly run
radially towards the Haversian canals (Gray’s Anatomy,
1995). With the axisymmetric approach in the finite
element analysis, the estimated permeability thus is in
the transverse plane of the osteon.
The value for the hydraulic permeability estimated in

this study (k ¼ 2:2� 10�7 mm4/N s) is two orders of
magnitude smaller than those used in studies by Zhang
et al. (1998) and Wang et al. (1999). These authors based
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Fig. 3. (a) The experimental and numerical curves on a logarithmic

scale are well approximated by a normalised negative e-power with a

time constant tr ¼ 0:85 s. (b) The slope of the logarithmic curves

shows, however, that both the experimental and the numerical curve

have time constants increasing from approximately tr ¼ 0:60 at

t ¼ 0:1 s to tr ¼ 0:95 s after t ¼ 2:0 s.
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their estimation on geometrical parameters of the
porosity, the values of which are in fact highly
uncertain. One physical explanation for this discrepancy
could be that the degree of filling of the canaliculi by the
osteocytic processes was underestimated, or in other
words, the fluid layer between the cellular processes and
the bone matrix is less than that assumed by these
authors (some 50 nm). This would fit with the findings
by Petrov (2000) that the effective porosity radius in
bone is of the order of 10 nm. Other possible explana-
tions are that the viscosity or the number of canaliculi is
higher. On the other hand, the present study also has
debatable input values. Lacuno-canalicular porosity, for
example, was assumed to be 5%, but has also been
reported to be as low as 0.023 (in man; Frost, 1960) and
0.042 (in dogs; Morris et al., 1982). The poroelastic bone
parameters and the hydraulic permeability, however, are
not very sensitive to changes in the lacuno-canalicular
porosity, that is, their values remain of the same order of
magnitude (own unreported data; Zhang et al., 1998).
The same holds for osteonic dimensions and the elastic
moduli of the bone tissue. It should be noted, however,
that the porosity of 5% refers to the whole lacuno-
canalicular space, and includes both the cells and the
freely flowing fluid. Cells and fluid are combined here
because of their comparable bulk modulus, as opposed
to the bulk modulus of the mineralised matrix. The
absolute fluid flow thus will be higher than calculated
with the model presented, because a part of the porosity
contents does not flow. The estimated hydraulic perme-
ability, however, does not change because it has been
derived directly from the relaxation times, not from the
geometrical dimensions of the canaliculi and osteocytic
protrusions.
It is interesting to note that the essentials of the

relaxation curve recorded in vivo by Otter et al. can be
approximated with a simple finite element model of fluid
flow in an osteon under axial step compression.
Especially, the observation that the relaxation curve is
described by a shifting time constant due to the later
response of the deeper osteon layers, strongly suggests
that the streaming potentials measured by Otter et al.
are due to canalicular fluid flow only, and do not require
a pathway through or an exchange with the bone’s
microporosity, as suggested by others (Salzstein et al.,
1987; Pollack and Petrov, 2000; Petrov and Pollack,
2000). This hypothesis is consistent with observations by
Otter et al. (1994) that the bone fluid mainly drains into
the Haversian canals.
Finally, it must be considered that cortical bone may

show a wide variety of elastic moduli, permeabilities and
osteonal dimensions for functional reasons. It is
conceivable, for example, that the human skull has
different values as compared to the rest of the skeleton.
In this context, it is also interesting to consider that
osteonic dimensions differ with species (Jowsey, 1966;

Albu et al., 1990), but also differ within the same animal
(Skedros et al., 1997). What this means for the
mechanosensitivity of their bone tissue is an interesting
area of research.
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