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1. Introduction

We begin with the same setup as before: Let x be a Heegner point on X0(N), let c
be the divisor (x)− (∞), and let d be the divisor (x)− (0). We need to compute the
Néron height pairing 〈c, Tmcσ〉 = 〈c, Tmdσ〉. We have seen that this global height
pairing decomposes into a sum of local height pairings. Andrew computed the local
height pairings at the archimedean places two weeks ago; our goal will be to use the
theory of canonical lifts to start the case where p is a split prime in K.

2. Reduction of CM elliptic curves

Throughout the section we let E denote a CM elliptic curve with End(E) = OK ,
where OK is the full ring of integers of K. Every result we will introduce does admit
some generalization to elliptics curve with CM by a non-maximal order O, but [GZ]
only considers CM curves of the first type, so this will suffice for our purposes.

Recall that an elliptic curve E over a field k of characteristic p is called ordinary
if E[p](k) ' Z/pZ and supersingular if E[p](k) = 0. There are several equivalent
definitions of a supersingular elliptic curve.

Theorem 1 ([Sil1, Thm V.3.1]). The following are equivalent:

(a) E[p](k) = 0.
(b) V is inseparable.
(c) [p] : E → E is purely inseparable and j(E) ∈ Fp2.
(d) End(E) is an order in a quaternion algebra.

We will be considering the reduction of Heegner points to compute the local height
pairings, and knowledge of the behavior of the reduction of CM elliptic curves will
prove useful. Fortunately, the type of reduction at a place v | p is determined by
the splitting behavior of p in K.

Proposition 2. Let E be an elliptic curve over a number field F with CM by K
(i.e. End(E) ' OK) and P | p a prime of FK lying over a place of good reduction.
Then E has ordinary reduction mod P∩F if and only if p is split in K. Moreover,
if p is split, then the reduction map gives a natural isomorphism End(E) ' End(E).

Proof. Suppose that p is split in K, so pOK = pp′, Without loss of generality,
suppose that p = P ∩OK , and let m be the order of [p] ∈ Cl(K). Then pm = µOK
and p′ m = µ′OK for some µ, µ′ ∈ OK . Up to multiplying by a unit, it follows that
µµ′ = pm. Moreover, since p is split, we have µ′ /∈ p. We use the notation [µ′] to
denote the element of End(E) corresponding to µ′ in the identification End(E) '
OK . Then µ′ /∈ p, else p = p′, and so we can consider the reduction of [µ′] mod p.
In particular, if ω is a differential on E over F , then we necessarily have

[µ′]∗(ω) = µ′ω.

In particular, the reduction is nonzero, and so [µ′] is separable. Since [µ′] has degree
a power of p, this shows that E has ordinary reduction.
Conversely, if E has ordinary reduction, then tensoring the p-adic representation

End(E)⊗ Zp → EndZp(Tp(E)) ' Zp
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with Q, we get

K ⊗Qp → Qp.

But the left hand side is a 2-dimensional Qp algebra, hence the induced map is not
injective. But that is only possible if K⊗Qp is not a field, hence p is split in K. �

3. Canonical lifts

There is a generalization of the idea of ordinary reduction to abelian varieties. If
A is an abelian variety over a field k of positive characteristic, then

A[p](k) = (Z/pZ)n

for some 0 ≤ n ≤ dimA. If n = dimA, so A has as much p-torsion as possible, then
we say A is ordinary.

If A is an ordinary abelian variety over a perfect field k, then a canonical lift of
A is an abelian scheme A/W (k) such that the special fiber of A is isomorphic to A
and the connected-étale sequence of A[p∞] is split. By results of Lubin-Serre-Tate
[LST], the canonical lift of an ordinary abelian variety exists and is unique up to
isomorphism.

In the case of an ordinary elliptic curve over Fp, Deuring [Deur] gives a classical
construction of a canonical lift.

Theorem 3. Let E0 be an elliptic curve defined over Fp and α0 ∈ End(E0) a
nontrivial endomorphism, so α0 6= [n] for any n ≥ 2. Then there exists an elliptic

curve E over a number field, an endomorphism α ∈ End(Ẽ), and a prime p | p such
that the reduction of E mod p is isomorphic to E0 and α reduces to α0.

Proof. We first notice that we can assume that kerα0 is cyclic, as otherwise α0 =
[n] ◦ α′0 for some other α′0 ∈ End(E0). Similarly, we may assume that p - degα0

by considering α0 + [n] for large enough n prime to p. In both cases, this is simply
because lifting [n] is trivial, provided a lift of the curve exists.

Now suppose that α0 has degree n prime to p. Let E(j) be a generic elliptic curve
over Q with transcendental j invariant. If Z1, . . . , Zψ(n)

1 are the cyclic subgroups of
E(j) of order n, then we consider the isogenies

E(j)→ E(j)/Zi =: E(ji).

Noting that ji is integral over Z[j], we consider the integral closureR of Z[j, j1, . . . , jψ(n)]
in Q(j, j1, . . . , jn). Then the obvious map

Z[j]→ Fp
j 7→ j(E0)

can be extended to R since R is integral and Fp is algebraically closed. Let m be

the kernel of the extended map R → Fp. We can then choose models for E(ji)

over R with good reduction at m, so that we can consider the reductions E(ji). In

particular, we have that E(j) ' E0 since they have the same j invariant. Since n is
prime to p, the reduction map is injective on n torsion, hence the reductions Zi are
again cyclic of order n. By counting, one of the Zi, say Z1, is equal to the kernel of
α0. Thus

E(j) ' E(j)/Z1 ' E(j1).

1Here ψ(n) is the Dedekind psi function ψ(n) = n
∏
p|n

(
1 +

1

p

)
.
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So now we have an isogeny between elliptic curves with transcendental j invariant
over Q such that the reductions of the curves are isomorphic and the isogeny reduces
to the specified endomorphism. To descend this isogeny to an endomorphism of a
curve over a finite extension of Q, we note that the isomorphism E(j) ' E(j1) forces
(p, j − j1) ⊆ m.

Pick a minimal prime over (j − j1), and let q be an extension of it to the integral

closure R in Q(j). We note that q ∩ Z = 0, else q would contain both j − j1 and
some rational prime q, hence would have height at least 2.

Quotienting by q gives an integral extension of Z, and the reduction E := E(j)q
and E(j1)q are defined over the fraction field of this integral extension, hence over a
number field. Moreover, since j = j1 after quotienting by q, we have E(j)q ' E(j1)q,
potentially after passing to a finite extension so that the isomorphism is defined
over the field. Then m/q gives rise to a place of this field of definition at which the

reduction of E is E(j) ' E0.
Composing the isogeny α := E → E(j1)q with the isomorphism E(j1)q ' E, we

get an endomorphism α : E → E with kernel (Z1)q ' Z1. Reducing mod m, we see

that the kernel of α is Z1. Hence α and α0 are isogenies with the same kernel, and
so differ by an automorphism. In the general case, the only automorphisms of E0

are ±1, which can clearly be lifted, so we are done. If we happen to have E0 with
extra automorphisms, then we necessarily have a curve with j invariant 0 or 1728.
But in both cases, we can clearly lift using the standard curves y2 = x3 − x and
y2 = x3 − 1 over Q, respectively. �

Returning to the situation of interest, if E/Fp
is an ordinary elliptic curve, then

Proposition 1 implies that End(E) ' OK for some imaginary quadratic field K.
Suppose that OK = Z + τZ as Z-modules. Then applying Deuring lifting to (E, τ)

gives a lift Ẽ over some number field such that OK ⊆ End(Ẽ), as the reduction
map is injective on endomorphisms. Since the endomorphism ring can’t be any

bigger than OK , we conclude that End(Ẽ) ' End(E) ' OK . So in this case we
can actually lift the full endomorphism ring, while this is clearly impossible in the
supersingular case.

4. Computation of the local height pairing

The local height pairings 〈c, Tmdσ〉v for each place v of H are computed using
intersection theory on Drinfeld’s model of X0(N) over Z. In particular, let X =
X0(N) be the coarse moduli scheme of X = X0(N) and x = (φ : E → E′) a Heegner
point of discriminant D on X over H. If we let Λv be the ring of integers in Hv for
some place v | p, then we can work with the corresponding Λv-point x of X ⊗ Λv.

Let A denote the ideal class of K corresponding to σ ∈ Gal(H/K) via the Artin
map, and rA(m) be the number of integral ideals of norm m. Then the local height
pairing can be computed via an arithmetic intersection product.

Theorem 4 ([GZ, Prop. III.3.3]). Assume m ≥ 1 is prime to N and rA(m) = 0.
Then we have the formula

〈c, Tmdσ〉v = −(x · Tmxσ) log q.

Working with complete local rings with an algebraically closed residue field will
turn out to be useful, so in computing (x ·Tmxσ), we may extend scalars to the com-
pletion W of the maximal unramified extension of Λv by considering the intersection
product on X ⊗Λv W .
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If S is a complete local ring with algebraically closed residue field k (for example
W or W/πn), and x = (φ : E → E′) and y : (ψ : F → F ′) are two S-points
with noncuspidal reduction, then we define HomS(y, x) to be the set of all pairs of

isogenies (f, f ′) such that the diagram

F F ′

E E′

ψ

f f ′

φ

commutes. The degree of (f, f ′) ∈ HomS(y, x) is defined to be deg f = deg f ′. We
will often consider the finite set HomS(y, x)degm of fixed degree maps.

The main motivation of this lecture is to introduce and start the proof of the
following theorem.

Theorem 5 ([GZ, Prop. III.4.4]). Assume that m is prime to N and rA(m) = 0.
Then

(x · Tmxσ) =
1

2

∞∑
n=1

# HomW/πn(xσ, x)degm.

We will only consider the case where p is a split prime in K for now. General
reduction theory implies that there is an injection

HomW/πn+1(xσ, x) ↪→ HomW/πn(xσ, x)

and since W is complete, a lifting result implies that

HomW (xσ, x) =
⋂

HomW/πn(xσ, x).

To prove Theorem 5 in the case of a split prime p in K, we will actually show
that both sides are identically zero. Since p is split in K, both x and xσ have
ordinary reduction by Proposition 2. To see that the right hand side is zero, it
suffices to show that HomW (xσ, x) ' HomW/π(xσ, x). Since HomW (xσ, x) can be
identified with the set of integral ideals in A, with degree equal to the norm of the
ideal, the assumption rA(m) = 0 allows us to conclude HomW (xσ, x) = 0. Since
HomW/πn+1(xσ, x) ↪→ HomW/πn(xσ, x), we can then conclude that every term in the
right hand side is zero. Unfortunately the Deuring lifting is only enough to conclude
that endomorphism rings over W and W/π are isomorphic, and we need Serre-Tate
theory to obtain the isomorphism between the two Hom sets. The computation of
the left hand side is shown to be zero by actually computing the intersection product
(which will again appeal to the theory of canonical lifts).
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