E4 Acids, Bases, and Salts

Session One of two session lab

- Complete Parts 1 and 2 in lab. If time allows, start or complete Part 3.
Reminder:
Pre-lab report, page 112, due at start of lab.

Part 1. Structure and Acid-Base Properties

\qquad

Information

- Acids and Bases usually contain O,H, and another element (X).
- Teams will be provided with compounds labeled with the formula $\mathrm{X}_{\mathrm{c}} \mathrm{O}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}$
($\mathbf{X}=$ some element; \mathbf{a}, b, and $\mathrm{c}=$ some number)
$\underline{\text { Lab }}$
- Determine if compounds labeled with the formula $\mathrm{X}_{\mathrm{c}} \mathrm{O}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}$ are acids or bases by measuring the pH
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$\mathrm{X}_{\mathrm{c}} \mathrm{O}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}$ compounds and Acid-Base formulas	
- The formulas for acids are written in the form $\mathbf{H}_{\mathrm{b}} \mathbf{X}_{\mathrm{c}} \mathrm{O}_{\mathrm{a}}$.	
$\mathrm{H}_{2} \mathrm{CO}_{3}$ (carbonic acid)	$\mathrm{H}_{3} \mathrm{PO}_{4}$ (phosphoric acid)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$\mathrm{X}_{\mathrm{c}} \mathrm{O}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}$ compounds and Acid-Base formulas

- The formulas for bases are written in the form $\mathrm{X}_{\mathrm{c}}(\mathrm{OH})_{\mathrm{n}}$.
\qquad
\qquad

NaOH

$\mathbf{M g}(\mathbf{O H})_{2}$

$\mathrm{Ca}(\mathrm{OH})_{2} \quad \mathrm{NH}_{4} \mathrm{OH}$
\qquad
\qquad
\qquad
\qquad
\qquad

$\mathrm{X}_{\mathrm{c}} \mathrm{O}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}$ compounds and Acid-Base formulas
Q. Acid and base compounds typically contain oxygen,
hydrogen, and another element (X). Based on formulas
of common acids and bases, what distinguishes acids
from bases with regard to element X ?
Common acids: $\mathrm{H}_{2} \mathrm{CO}_{3}, \mathrm{H}_{3} \mathrm{PO}_{4}, \mathrm{HClO}, \mathrm{HNO}_{3}$
Common bases: $\mathrm{NaOH}, \mathrm{Mg}_{(}(\mathrm{OH})_{2}, \mathrm{Ca}(\mathrm{OH})_{2}, \mathrm{NH}_{4} \mathrm{OH}$
Answer:

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Part 1 Objectives

- Based on pH data and the chemical composition of tested compounds, determine if acid-base properties can be predicted from:
the number of oxygen and/or hydrogen atoms in $\mathrm{X}_{\mathrm{c}} \mathrm{O}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}$ compounds?
the electronegativity of element X ?

Disccussion questions 1-3, page 125

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

	pH		$\begin{aligned} & \text { - } \mathrm{ACID}=\mathrm{pH}<7 \\ & \\ & \text { - } \operatorname{BASE}=\mathrm{pH}\end{aligned}>^{7} 7$
	1		
	2		
	3		
	4		
	5		
	6		
	7		
	8		
	9		
	10		
Universal indicator	$\downarrow \uparrow$		
	14		

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad

- $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=$mole/liter units
- pH values are unitless
\qquad
\qquad

pH and $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
- DIGIT/S LEFT of the pH decimal point
= POWER of TEN by which the hydronium
concentration value is multiplied.
If $\mathbf{p H}=3.27,\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=[?] \times 10^{-3}$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$	pH	- $\Delta \mathrm{pH}=1$ reflects a ten fold change in $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] ; \Delta \mathrm{pH}=2$ reflects a hundred fold change in $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$, etc. - As $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$increases, pH decreases: $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$ pH
10^{-1}	1	
10^{-2}	2	
10^{-3}	3	
10^{-4}	4	
10^{-5}	5	
10^{-6}	6	
10^{-7}	7	
10^{-8}	8	
10^{-9}	9	
10^{-10}	10	
$\downarrow \uparrow$	$\downarrow \uparrow$	
10^{-14}	14	

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$	pH	Check pH data for errors
10^{-1}	1	Q. Your teammate indicates that 0.001 M $\mathbf{H N O}_{3}=\mathbf{p H} 2.0$. You correctly respond, "your pH reading must be wrong!" Why? Assume the acid ionizes completely:$\begin{array}{ll} \mathrm{HNO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{NO}_{3} \\ 0.001 \mathrm{M} & 0.001 \mathrm{M} \quad 0.001 \mathrm{M} \end{array}$
10^{-2}	2	
10^{-3}	3	
10^{-4}	4	
10^{-5}	5	
10^{-6}	6	
10^{-7}	7	
10^{-8}	8	
10^{-9}	9	
10^{-10}	10	
$\downarrow \uparrow$	$\downarrow \uparrow$	
10^{-14}	14	

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$	pH	[OH^{-}]	$\begin{aligned} \mathrm{K}_{\mathrm{w}} & =\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right] \\ & =1.0 \times 10^{-14} \end{aligned}$
10^{-1}	1	10^{-13}	
10^{-2}	2	10^{-12}	
10^{-3}	3	10^{-11}	
10^{-4}	4	10^{-10}	
10^{-5}	5	10^{-9}	
10^{-6}	6	10^{-8}	
10^{-7}	7	10^{-7}	
10^{-8}	8	10^{-6}	
10^{-9}	9	10^{-5}	
10^{-10}	10	10^{-4}	
$\downarrow \uparrow$	$\downarrow \uparrow$	$\downarrow \uparrow$	
10^{-14}	14	10^{-0}	

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Q. A sample of $0.1 \mathrm{M} \mathrm{NH}_{3}$ has a $\mathbf{p H}=\mathbf{1 1 . 0}$. What is $\left[\mathrm{OH}^{-}\right]$?

Answer: \qquad

- Acid-base ionization is solvent and concentration dependent.

\qquad
\qquad

${ }^{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}$	pH	
10 ${ }^{-1}$	1	Acid Strength and pH
10^{-2}	2	- Stronger acids donate protons/ionize to a greater extent than weak acids.
10^{-3}	3	
10^{-4}	4	
10^{-5}	5	- Stronger acids exhibit a lower pH than equimolar concentrations of weaker acids.
10-6	6	
10^{-7}	7	
10^{-8}	8	
10^{-9}	9	
10-10	10	DEMO:pH of $\mathbf{0 . 1 0} \mathrm{M} \mathrm{H}_{3} \mathrm{BO}_{3}$ versus $0.10 \mathrm{M} \mathrm{HClO}_{4}$
$\downarrow \uparrow$	$\downarrow \uparrow$	
10 ${ }^{-14}$	14	

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q. $0.001 \mathrm{M} \mathrm{HClO}_{4}=\mathrm{pH} 3.0 ; 0.010 \mathrm{M} \mathrm{H}_{2} \mathrm{CO}_{3}=\mathrm{pH} 3.0$ 1. Calculate the \% ionization of HClO_{4} and $\mathrm{H}_{2} \mathrm{CO}_{3}$.
 2. Indicate if the acids are strong or weak.

```
% ionization HClO}4. % ionization ( H2CO3
```

Strength: \qquad
Q. The textbook figure below depicting pH and acid-base strength is misleading. How?

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Acid-Base Strength and Structure

- Acid-base strength is dependent on structure.
- If H in a compound is a bare proton it will be an electron pair seeker and readily bond to water molecules to form $\left[\mathrm{H}_{3} \mathrm{O}\right]^{+}$
\qquad
\qquad

Example

H is a bare proton when bonded to an O atom, which in turn is attached to highly electronegative Cl in HClO

- Bond polarity is a dominant factor in determining relative strength of the oxyacids.

Acid strength and structure

\qquad
Q. The electronegativity of $\mathrm{N}=3.0$ and $\mathrm{C}=2.5$. Predict the comparative rate of reaction of $5 \mathrm{M} \mathrm{HNO}_{3}$ and $5 \mathrm{M} \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ with zinc:

$$
\mathbf{Z n}_{(\mathrm{s})}+2 \mathrm{H}^{+}{ }_{(\mathrm{aq})}=\mathrm{Zn}^{2+}{ }_{(\mathrm{aq})}+\mathrm{H}_{2(\mathrm{~g})}
$$

Rate: \qquad $>$ $>$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Part 2. Conjugate Acid-Base Pairs

Lab

- Determine and compare the pH of conjugate acids and bases. \qquad

Information

- Conjugate acids and bases differ by one proton.
- Conjugate acid of HCO_{3}^{-}is $\mathrm{H}_{2} \mathrm{CO}_{3}$
- Conjugate base of HCO_{3}^{-}is $\mathrm{CO}_{3}{ }^{2-}$
- Teams will be provided with 0.10 M acids; conjugate bases will be provided as 0.10 M sodium salts

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
Any Questions? \qquad
Contact nkerner@umich.edu \qquad
\qquad

