E4 Acids, Bases, and Salts

Session One of two session lab

• Complete Parts 1 and 2 in lab. If time allows, start or complete Part 3.

Reminder:

Pre-lab report, page 112, due at start of lab.

Acids and Bases

Q. Are acid-base properties of substances predictable based on their chemical composition?

Common consumer products

Household bases

Part 1. Structure and Acid-Base Properties

Information

- Acids and Bases usually contain O, H, and another element (X).
- Teams will be provided with compounds labeled with the formula $X_cO_aH_b$

(X= some element; a, b, and c = some number)

<u>Lab</u>

 \blacksquare Determine if compounds labeled with the formula $X_cO_aH_b$ are acids or bases by measuring the pH

X_cO_aH_b compounds and Acid-Base formulas

The formulas for acids are written in the form H_bX_cO_a.

H₂CO₃ (carbonic acid)

H₃PO₄ (phosphoric acid)

X_cO_aH_b compounds and Acid-Base formulas

The formulas for bases are written in the form X_c(OH)_n.

NaOH

 $Mg(OH)_2$

Ca(OH)₂

 $H)_{2}$ $NH_{4}($

X_cO_aH_b compounds and Acid-Base formulas

Q. Acid and base compounds typically contain oxygen, hydrogen, and another element (X). Based on formulas of common acids and bases, what distinguishes acids from bases with regard to element X?

 $\label{eq:common_common} \begin{tabular}{ll} Common acids: H_2CO_3, H_3PO_4, $HCIO$, HNO_3\\ Common bases: $NaOH$, $Mg(OH)_2$, $Ca(OH)_2$, NH_4OH\\ \end{tabular}$

Answer:			

Part 1 Objectives

- Based on pH data and the chemical composition of tested compounds, determine if acid-base properties can be predicted from:
- the number of oxygen and/or hydrogen atoms in $X_c O_a H_b$ compounds?
- the electronegativity of element X?

Disccussion questions 1-3, page 125

pH measurement

pH paper

DEMO

pH meter

	pН	
		↑
	1	
	2	
	3	■ACID = pH < 7
	4	_
	5	
	6	
	7	
	8	
	9	
	10	- DACE II. 7
Universal	↓↑	■ BASE = $pH > 7$
indicator	14	

Universal Indicator Demo

 Dry ice is added to water that contains a few drops of universal indicator to produce carbonic acid

Dry ice = $CO_2(s)$

Universal indicator

H₂O (1) + CO₂ (s) Water dry ice

- H₂CO₃ (aq) carbonic acid
- Universal indicator changes colors when pH changes; as the solution becomes more acidic, the pH drops

pH scale? Why?

■ On average, at 25°C, only 1 in 10,000,000 H₂O molecules ionize:

 $\frac{1}{10,000,000}$ $1 \times 10^{-7} M$

$$pH = - \log [H_3O^+]$$

Example:

 $pH7 = -\log [1 \times 10^{-7}]$

- $[H_3O^+]$ = mole/liter units
- pH values are unitless

pH and [H₃O⁺]

DIGIT/S LEFT of the pH decimal point
 POWER of TEN by which the hydronium concentration value is multiplied.

If pH = $\frac{3}{2}$, [H₃O⁺] = [?] x $\frac{10}{3}$

[H ₃ O ⁺]	pН	
10-1	1	 Δ pH = 1 reflects a ten fold change
10-2	2	in [H ₃ O ⁺]; Δ pH = 2 reflects a
10-3	3	hundred fold change in $[H_3O^+]$, etc.
10-4	4	■ As [H ₃ O ⁺] increases, pH decreases
10-5	5	[H_O+]
10-6	6	[H ₃ O ⁺]
10-7	7	pH
10-8	8	
10-9	9	
10-10	10	
↓↑	↓↑	
10-14	14	

[H ₃ O ⁺]	pН	Check pH data for errors
10-1	1	Q. Your teammate indicates that 0.001 M
10-2	2	HNO ₃ = pH 2.0. You correctly respond,
10-3	3	"your pH reading must be wrong!" Why?
10.1		Assume the acid ionizes completely:
10-4	4	$HNO_3 + H_2O \rightarrow H_3O + NO_3$
10-5	5	0.001 M 0.001 M 0.001 M
10-6	6	
10-7	7	
10-8	8	
10-9	9	
10-10	10	
↓↑	↓↑	
10-14	14	

[H ₃ O ⁺]	pН	[OH·]	
10-1	1	10-13	
10-2	2	10-12	
10-3	3	10-11	
10-4	4	10-10	
10-5	5	10-9	
10-6	6	10-8	$\mathbf{K}_{\mathbf{w}} = [\mathbf{H}_{3}\mathbf{O}^{+}][\mathbf{O}\mathbf{H}^{-}]$
10-7	7	10-7	$\mathbf{R}_{w} = [1130][011]$ = 1.0 x 10 ⁻¹⁴
10-8	8	10-6	- 1.0 A 10
10-9	9	10-5	
10-10	10	10-4	
↓↑	↓↑	↓↑	
10-14	14	10-0	

Q.	A sample of 0.1 M	NH ₃ has a	pH = 11.0.
	What is [OH·]?		

Answer:

Bronsted Acids and Bases

■An acid is a proton (H+) donor - forms hydronium ions.

A base is a proton (H+) acceptor - forms hydroxide ions.

$$HOH + : NH_3 \longrightarrow NH_4^+ + OH^-$$
Acid Base

Acid-Base Ionization and Concentration

• Acid-base ionization is solvent and concentration dependent.

$$acid + \dot{O} \stackrel{H}{\longrightarrow} anion + \stackrel{H}{\longrightarrow} \stackrel{H}{\longrightarrow} H$$

DEMO: Addition of water to glacial acetic acid

[H ₃ O ⁺]	pН
10-1	1
10-2	2
10-3	3
10-4	4
10-5	5
10-6	6
•10 ⁻⁷	•7
10-8	8
10-9	9
10-10	10
↓↑	↓↑
10-14	14

Acid Strength and pH

- Stronger acids donate protons/ionize to a greater extent than weak acids.
- Stronger acids exhibit a lower pH than equimolar concentrations of weaker acids.

<u>DEMO</u>:

pH of 0.10 M H₃BO₃ versus 0.10 M HClO₄

Acid-Base Strength and % Ionization % ionization acid = $\begin{bmatrix} \underline{H}_3 \underline{O}^+ \end{bmatrix}_i \times 100\%$ % ionization base = $\begin{bmatrix} \underline{OH}^- \end{bmatrix}_i \times 100\%$ Value in numerator determined from pH

Q. 0.001 M HCIO₄ = pH 3.0; 0.010 M H₂CO₃ = pH 3.0

1. Calculate the % ionization of HCIO₄ and H₂CO₃.

2. Indicate if the acids are strong or weak.

** ionization HCIO₄

** ionization H₂CO₃

Strength:

pH Acid-base strength

Strong Acid

Weak Acid

Neutral (water)

Weak Base

Strong Base

Strong Base

Q. The textbook figure below depicting pH and

Acid-Base Strength and Structure

- Acid-base strength is dependent on structure.
- If H in a compound is a bare proton it will be an electron pair seeker and readily bond to water molecules to form [H₃O]⁺

Example

H is a bare proton when bonded to an O atom, which in turn is attached to highly electronegative Cl in HClO

 Bond polarity is a dominant factor in determining relative strength of the oxyacids.

Е	lect	ror	neg	ativ	ity	of 2	Χv	s. p	Н	of X	C _c O _s	$\mathbf{H}_{\mathbf{b}}$	cor	np	oun	ds
Electi	Electronegativity of the elements*															
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
IA	IIA	IIIB	IVB	VB	VIB	VIIB		VIIIE		IB	IIB	IIIA	IVA	VA	VIA	VIIA
H	(). B	ased	stri	ctlv (on el	lectr	ones	ativ	itv v	alue	s, pr	edic	t the	acio	1
2.1	•				_	BrO				-		7.1				
Li	Be		tren,	Sur	,1 111	510	vers	45 11	110.			В	C	N	0	F
1.0	1.5		Α	nsw	er:		>					2.0	2.5	3.0	3.5	4.0
Na	Mg											Al	Si	P	S	Cl
0.9	1.2											1.5	1.8	2.1	2.5	3.0
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br
0.8	1.0	1.3	1.5	1.6	1.6	1.5	1.8	1.8	1.8	1.9	1.6	1.6	1.8	2.0	2.4	2.8
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I
0.8	1.0	1.2	1.4	1.6	1.8	1.9	2.2	2.2	2.2	1.9	1.7	1.7	1.8	1.9	2.1	2.5
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At
0.7	0.9	-Lu	1.3	1.5	1.7	1.9	2.2	2.2	2.2	2.4	1.9	1.8	1.8	1.9	2.0	2.2
Fr	Ra	Ac	Th	Pa	U	Np-	Νo									
0.7	0.9	1.1	1.3	1.5	1.7		1.3									
	= Metalloids = Nonmetals = Metals															

Acid strength and structure

Q. The electronegativity of N = 3.0 and C = 2.5.

Predict the comparative rate of reaction of 5 M HNO₃ and 5 M HC₂H₃O₂ with zinc:

$$Zn_{(s)} + 2H^{+}_{(aq)} = Zn^{2+}_{(aq)} + H_{2(g)}$$

Rate: >

DEMO

Part 2. Conjugate Acid-Base Pairs

Lab

 \blacksquare Determine and compare the pH of conjugate acids and bases.

Information

- Conjugate acids and bases differ by one proton.
 - Conjugate acid of HCO_3 is H_2CO_3
 - Conjugate base of HCO₃ is CO₃²-
- Teams will be provided with 0.10 M acids; conjugate bases will be provided as 0.10 M sodium salts

