E3 Redox: Transferring electrons

Session one of two
• First hour: Discussion
 (E1)
• 2nd and 3rd hour: Lab
 (E3, Parts 1 and 2A)

Oxidation-Reduction (Redox)

• Reactions involve electron transfer.
• Change in charge (oxidation state) of reactants.

Example: \(2 \text{Na}_\text{(s)} + \text{Cl}_2\text{(g)} \rightarrow 2\text{NaCl}_\text{(s)} \)

- Loss of electrons (LEO) = oxidation
- Gain of electrons (GER) = reduction

Redox reaction

\[2 \text{Na} + \text{Cl}_2 \rightarrow 2\text{NaCl} + \text{energy} \]

LEO the lion says “GER”
- Loss of electrons (LEO) = oxidation
- Gain of electrons (GER) = reduction
REDOX Half Reactions

<table>
<thead>
<tr>
<th>Oxidation</th>
<th>Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>(> in oxidation state)</td>
<td>(< in oxidation state)</td>
</tr>
<tr>
<td>$2 \text{Na} \rightarrow \text{Na}^+ + e^-$</td>
<td>$(\text{Cl}_2 + 2e^- \rightarrow 2\text{Cl}^-)$</td>
</tr>
</tbody>
</table>

Half reactions always written to show electron GAIN.
*The final equation reflects the sum of the balanced half reactions so that electrons lost = electrons gained:

$$2 \text{Na} + \text{Cl}_2 \rightarrow 2 \text{Na}^+ + 2 \text{Cl}^-$$

OXIDIZING AGENT
Gains electrons and **is reduced** (GER)

REDUCING AGENT
Loses electrons and **is oxidized** (LEO)

An oxidizing agent brings about the oxidation of another substance.
A reducing agent brings about the reduction of another substance.

Redox Agents

Q. Identify the reducing agents (RA) and oxidizing agents (OA) in the reaction:

$$2 \text{Na} + \text{Cl}_2 \rightarrow 2 \text{Na}^+ + 2 \text{Cl}^- + \text{energy}$$

| RA | OA | OA | RA |

Oxidation State versus Family Number

| Metals lose electrons | Non-metals gain electrons |

Not all elements have official names.
Ions with multiple oxidation states

Q. Sn (Group IVA) has oxidation states of zero, plus two, and plus four. Write half reactions depicting:

Reduction of Sn^{2+} ion:
\[\text{Sn}^{2+} + 2 \text{e}^- \rightarrow \text{Sn} \]

Oxidation of Sn^{2+} ion:
\[\text{Sn}^{2+} \rightarrow \text{Sn}^{3+} + 2 \text{e}^- \]

- Sn^{3+} can act as an oxidizing or reducing agent in redox reactions!
Strength of Redox Agents

Example:

\[2 \text{Na} + \text{Cl}_2 \rightarrow 2 \text{Na}^+ + 2 \text{Cl}^- \]

- The reactants are the stronger RA and OA and react spontaneously
- The non-reactive products are the weaker OA and RA.

RA: Na > Cl
OA: Cl$^-$ > Na$^+$

Redox agent strength

Q. Rank the strength of the reducing/oxidizing agents in the reaction below:

\[2 \text{Sb} + 3 \text{Cl}_2 \rightarrow 2 \text{Sb}^{3+} + 6 \text{Cl}^- \]

RA: Sb > Cl$^-$
OA: Cl$_2$ > Sb$^{3+}$

Reaction and Redox Strength

If RA: Cu > Ag, OA: Ag$^+$ > Cu$^{2+}$

If RA: Cu > Ag, OA: Ag$^+$ > Cu$^{2+}$

Cu(s) + Ag$^+(aq)$ → ?
Ag(s) + Cu$^{2+}(aq)$ → ?

Reactions and Redox Strength

- The stronger RA and OA react:

 Cu(s) + Ag$^+(aq)$ → reaction

- The weaker RA and OA do NOT react:

 Ag(s) + Cu$^{2+}(aq)$ → no reaction
Part I B. Predicting Metal Reactivity.

- Determine the reducing agent (RA) strength of four team-assigned metals where the metal ions of all four metals are available and only three of the four metals are available for experimental tests.

Experiment Design and Data Analysis

Example

You need to determine the reducing agent strength of Zn, Cu, and Mg.

Problem

Available: Solutions of Zn$^{2+}$, Cu$^{2+}$, and Mg$^{2+}$, Zn and Cu only (i.e., Mg is unavailable)

Experiment Design for Part 1B.

- Create a table for recording data (pre-lab).

<table>
<thead>
<tr>
<th></th>
<th>Zn$^{2+}$</th>
<th>Cu$^{2+}$</th>
<th>Mg$^{2+}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zn</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cu</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mg</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Reducing agent species (metals) on one side and oxidizing agents species (metal ions) on other side.

Experiment Design and Data Analysis

- Test available metal and metal ion combinations
- Record observations

Example:

Zn(s) + Cu$^{2+}$ (aq) → reaction
Check data. Does it make sense?

<table>
<thead>
<tr>
<th></th>
<th>Zn$^{2+}$</th>
<th>Cu$^{2+}$</th>
<th># rxns.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zn</td>
<td>No</td>
<td>Rxn</td>
<td>1</td>
</tr>
<tr>
<td>Cu</td>
<td>Rxn</td>
<td>No</td>
<td>1</td>
</tr>
</tbody>
</table>

"These results don’t make sense!"

* Only one combination of metal and metal ion should react spontaneously -- the stronger RA and OA!

Data Analysis

<table>
<thead>
<tr>
<th></th>
<th>Zn$^{2+}$</th>
<th>Cu$^{2+}$</th>
<th># rxns.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zn</td>
<td>No</td>
<td>Reaction</td>
<td>1</td>
</tr>
<tr>
<td>Cu</td>
<td>No</td>
<td>No</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

This data makes sense:

* The stronger RA and OA show more reactions!
* RA and OA strength are inverse:

RA: Zn > Cu
OA: Cu$^{2+}$ > Zn$^{2+}$

Reducing Agent Strength of Mg, Zn, and Cu?

Q1. Complete the table below.

<table>
<thead>
<tr>
<th></th>
<th>Zn$^{2+}$</th>
<th>Cu$^{2+}$</th>
<th>Mg$^{2+}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zn</td>
<td>No</td>
<td>Rxn</td>
<td>No</td>
</tr>
<tr>
<td>Cu</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Mg</td>
<td>Rxn</td>
<td>Rxn</td>
<td>No</td>
</tr>
</tbody>
</table>

Q2. Comparative RA strength of the metals?

RA strength: Mg > Zn > Cu

Part I A. Metal reactions with water.

* Rank the reducing agent strength of the metals Na, K, Mg, and Ca from experimental observations.
* Correlate the results with the position of the metal in the periodic table.
Experimental Comparison of Ca and Mg

Metal + Water → metal hydroxide + \(\text{H}_2(g) \)

RA OA OA RA

Example:
\[\text{Mg}(s) + 2\text{HOH}(l) \rightarrow \text{Mg(OH)}_2(s) + \text{H}_2(g) \]

RA: Ca > Mg

Experimental Comparison of K, Na, Ca, and Mg

Na skitters around the water surface
K skitters around the water surface and ignites

RA: K > Na > Ca > Mg

Reactivity of K and Na

- Experimental determination of the reactivity of K and Na compared to Ca and Mg.

RA and OA Predictions from Electronegativity values

= Electron pulling power of an atom when part of a bond

Electronegativity of the elements

<table>
<thead>
<tr>
<th>I A</th>
<th>I I A</th>
<th>I I B</th>
<th>I V B</th>
<th>I V</th>
<th>I V B</th>
<th>I V A</th>
<th>I I A</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>2.1</td>
<td>Li</td>
<td>1.0</td>
<td>1.5</td>
<td>Na</td>
<td>0.9</td>
<td>Mg</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>Be</td>
<td>1.5</td>
<td>1.8</td>
<td>Al</td>
<td>1.3</td>
<td>Si</td>
</tr>
<tr>
<td>C</td>
<td>2.5</td>
<td>N</td>
<td>3.0</td>
<td>1.9</td>
<td>P</td>
<td>2.1</td>
<td>S</td>
</tr>
<tr>
<td>O</td>
<td>3.5</td>
<td>F</td>
<td>4.0</td>
<td>1.7</td>
<td>Cl</td>
<td>3.0</td>
<td>Br</td>
</tr>
<tr>
<td>K</td>
<td>0.8</td>
<td>Ca</td>
<td>1.0</td>
<td>1.6</td>
<td>Sc</td>
<td>1.3</td>
<td>Ti</td>
</tr>
<tr>
<td>Cr</td>
<td>1.5</td>
<td>Mn</td>
<td>1.6</td>
<td>1.5</td>
<td>Fe</td>
<td>1.8</td>
<td>Co</td>
</tr>
<tr>
<td>Ni</td>
<td>1.7</td>
<td>Cu</td>
<td>1.9</td>
<td>1.6</td>
<td>Zn</td>
<td>2.0</td>
<td>Ga</td>
</tr>
<tr>
<td>Ge</td>
<td>1.8</td>
<td>As</td>
<td>2.0</td>
<td>1.6</td>
<td>Se</td>
<td>2.1</td>
<td>Br</td>
</tr>
<tr>
<td>Rb</td>
<td>0.8</td>
<td>Sr</td>
<td>1.0</td>
<td>1.4</td>
<td>Y</td>
<td>1.5</td>
<td>La</td>
</tr>
<tr>
<td>Ce</td>
<td>1.1</td>
<td>Pr</td>
<td>1.5</td>
<td>1.6</td>
<td>Nb</td>
<td>1.7</td>
<td>Ta</td>
</tr>
<tr>
<td>W</td>
<td>1.8</td>
<td>Re</td>
<td>1.8</td>
<td>1.6</td>
<td>Mo</td>
<td>1.9</td>
<td>Hf</td>
</tr>
<tr>
<td>Rh</td>
<td>1.9</td>
<td>Pd</td>
<td>2.0</td>
<td>1.6</td>
<td>Ag</td>
<td>2.1</td>
<td>W</td>
</tr>
<tr>
<td>Pt</td>
<td>2.2</td>
<td>Au</td>
<td>2.4</td>
<td>1.8</td>
<td>Hg</td>
<td>1.9</td>
<td>Tl</td>
</tr>
<tr>
<td>Pb</td>
<td>2.0</td>
<td>Tc</td>
<td>2.2</td>
<td>1.8</td>
<td>Pb</td>
<td>2.0</td>
<td>Bi</td>
</tr>
<tr>
<td>Po</td>
<td>2.2</td>
<td>Ru</td>
<td>2.2</td>
<td>1.8</td>
<td>Os</td>
<td>2.0</td>
<td>Po</td>
</tr>
<tr>
<td>At</td>
<td>2.5</td>
<td>Ir</td>
<td>2.2</td>
<td>1.8</td>
<td>Ir</td>
<td>2.2</td>
<td>At</td>
</tr>
<tr>
<td>Fr</td>
<td>0.9</td>
<td>Ra</td>
<td>1.1</td>
<td>1.3</td>
<td>Ac</td>
<td>1.5</td>
<td>Th</td>
</tr>
<tr>
<td>Pa</td>
<td>1.7</td>
<td>U</td>
<td>1.7</td>
<td>1.7</td>
<td>Np</td>
<td>1.7</td>
<td>U</td>
</tr>
<tr>
<td>Np</td>
<td>1.9</td>
<td>Pu</td>
<td>1.9</td>
<td>1.9</td>
<td>Am</td>
<td>1.9</td>
<td>N</td>
</tr>
</tbody>
</table>

= Metalloids = Nonmetals = Metals
Q. Predict the RA strength of K compared to Na, Mg, and Ca based on position and electronegativity values.

<table>
<thead>
<tr>
<th></th>
<th>H</th>
<th>He</th>
<th>Li</th>
<th>Be</th>
<th>B</th>
<th>C</th>
<th>N</th>
<th>O</th>
<th>F</th>
<th>Na</th>
<th>Mg</th>
<th>Al</th>
<th>Si</th>
<th>P</th>
<th>S</th>
<th>Cl</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>2.0</td>
<td>1.5</td>
<td>1.0</td>
<td>1.5</td>
<td>2.0</td>
<td>2.5</td>
<td>3.0</td>
<td>3.5</td>
<td>4.0</td>
<td>0.9</td>
<td>1.2</td>
<td>1.5</td>
<td>1.8</td>
<td>2.1</td>
<td>2.5</td>
<td>3.0</td>
</tr>
</tbody>
</table>

K > Na > Ca > Mg

Q. Where are the best reducing and oxidizing agents located?

Caution: Attraction of metal or nonmetal ion for electrons in a bond is different from its metal or nonmetal element.

Questions?
Contact nkerner@umich.edu