E5 Lewis Acids and Bases

Session one

Pre-lab (p.141) due at start of lab. Hour 1: Discussion of E4

Hours 2 & 3: Lab (Parts 1and 2A)

Session two

Lab: Parts 2B, 3 and 4

Acids

Bronsted: Acids are proton donors.

Problem

 \bullet Compounds containing cations other than H^{+} are acids!

DEMO

Acids

• Cations other than H⁺ generate hydronium ions in aqueous solution!

Example: Al^{3+} (aq) = \approx pH 3!

Deodorants and acid loving plant foods contain aluminum salts

Lewis Definition of Acids and Bases

Define acid/base without using the word proton:

- A BASE DONATES unbonded EXECTRON PAIR/S.
- An ACID ACCEPTS ELECTRON PAIR/S.

Lewis Acids • Electron deficient species; potential electron pair acceptors. Examples: H+ Cu²⁺ Al³⁺ "I'm deficient!"

Aquo Complex Ions

• When a salt dissolves, the metal ions in the salt solution react with/bond to water molecules to forms aquo complex ions.

Example:

$$CuSO_4$$
 (s) $\rightarrow \underline{Cu^{2+}(aq)} + SO_4^{2-}(aq)$
 $[Cu(H_2O)_4]^{2+}$

Aquo Complex Ions

Examples

[H(H₂O)]⁺ [Cu(I Hydronium ion Tetra

[Cu(H₂O)₄]²⁺ Tetra aquo copper(II)ion

[Pb(H₂O)₄]²⁺ Tetra aquo lead ion

 Colored aquo complex ions contain a transition metal ion with incompletely filled d orbitals.

Part 1. Acidity of Cations

- Study the reaction of metal aquo complex ions with the Lewis base H₂O to produce hydronium ions.
- *****Collect pH data for different metal aquo complex ions in aqueous solution.
- pH versus periodic table position of ion's metal?
- pH versus metal ion size and charge?

Metal Ion Acid Strength

- The acid strength of a metal ion is dependent on its ability to attract electrons (oxidizing agent strength)
- The greater the acid strength of a metal ion the more polarized the bonded water molecules (and electron deficient the protons) in the aquo complex ion.

Reactions of Metal Aquo Complex Ions with Water

Reaction of Metal Aquo Complex Ion:

$$[Al(H_2O)_6]^{3+} + H_2O \rightarrow [Al(H_2O)_5(OH)]^{2+} + [H-H_2O]^{+}$$

- Electron deficient proton/s in the polarized water molecules of the metal aquo complex ion react and bond to an electron pair in another water molecule
- When a proton bonds to a water molecule, a H₃O⁺ ion is formed.

Q. Complete a balanced equation to show formation of hydronium ions:

$$[Al(H_2O)_6]^{3+} + 2 HOH \rightarrow [Al(H_2O)_4(OH)_2]^{+} + 2 [H_3O]^{+}$$

Metal Ion Acid Strength Q. Given the reducing agent strength Na > Mg > Al, indicate the Lewis acid strength of Na⁺, Mg²⁺, and Al³⁺ Metal Ion Acid Strength: Al³⁺ > Mg²⁺ > Na⁺

Part 2 A. Studies of complex formation with $\mathrm{NH_3}$ and $\mathrm{OH^{-1}}$.

• Study the reactions of metal aquo complex ions with Lewis bases (NH₃, OH⁻, ...).

DISCUSSION

- What kinds of observations allow you to infer that a complexation reaction is occurring?
- Predict the reactions of a metal ion with Lewis bases based on the position of its element in the Periodic Table

•	Ex	tent	of r	eac	tion	dif	fers	bec	ause	of	acid	str	engt	h di	ffer	ence	s.
	•Pat	teri	n of	rea	ctivi	ity v	vith	bas	es (e.g. (OH-	and	NE	I ₂) d	liffe	rs	
										_		nfig		0,			
1A 1	I	10 0	·				ic tu		CIC	<u></u>	11 00	5		HOII	2.		VIII 2
H			_						H								
1 s 1	IIA	4										IIIA	IVA	VA	VIA	VIIA	$1 \mathrm{s}^2$
3 Li	4 Be											5 B	c C	7 N	8 O	9 F	10 Ne
2s1	$2s^2$											2s ² 2p ¹	2s ² 2p ²	2s ² 2p ³	2 s ² 2 p ⁴	2s ² 2p ⁵	$2s^22$
l 1 Na	12 Mg											13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
3 _S 1	3s ²	шв	IVB	VB	VIB	VIIB	VIIIB	⇔ \	TIIB	IB	IIB	3s ² 3p ¹	3s ² 3p ²	3s ² 3p ³		3s ² 3p ⁵	3 s ² 3
19 K	20	21	22	23	24	2.5	26	27	28	29	3.0	31	32	33	34	35	36
K 4s1	Ca 4s ²	$\frac{Sc}{8d^4s^2}$	Ti	V 234.2	Cr	Mn 3454 s2	Fe 3d64s2	Co 3474 s2	Ni 3484.2	Cu 3d10ds1	$\frac{\mathbf{Z}\mathbf{n}}{3d^{10}4s^2}$	Ga	Ge	As 4s ² 4p ³	Se 4 s ² 4 p ⁴	Br 4s ² 4p ⁵	Kr 4s ² 4
37	38	39	40	41	42	43	44	45	46	47	48	45-4p	50	51	5 2	4s-4p-	54
Rb	Sr	Y	Žr	Nb	Mo	Tc	Řu	Rh	Pd	Ag	Cd	În	Sn	Sb	Te	I	Xe
5s1	5s ²	4d ¹ 5s ²	_		-	-	4d ⁷ 5s ¹	_	_	4d ¹⁰ 5s ¹	4d ¹⁰ 5s ²	_	5s ² 5p ²	5s ² 5p ³		5s ² 5p ⁵	
55 Cs	56 Ba	57 La*	72 Hf	73 Ta	7 4 W	7.5 Re	76 Os	77 Ir	78 Pt	79 An	80 Hg	8 1 T1	82 Pb	83 Bi	84 Po	85 At	86 Rn
6s1	6s ²	5d ¹ 6s ²	5d ² 6s ²	-3-2	- 4- 2	- 5- 2	5d66s2	5d ⁷ 6s ²	s/96°1	5d106s1	5d106s2	6s ² 6p ¹	6s ² 6n ²	2 2 3	2 4	6s ² 6p ⁵	5s ² 6

Metal Aquo Complex Ion Reactions with OH-

 If reaction occurs with a charged base such as OH⁻, the product may be a soluble complex ion or an uncharged insoluble complex depending on reaction stoichiometry.

Example 1: Formation of a soluble complex ion:

$$[Al(H_2O)_6]^{3+} + OH^{-} \rightarrow [Al(H_2O)_5(OH)]^{2+} + H_2O$$

Aquo Complex Ion Reactions with OH-

Example 2: Formation of a insoluble complex:

$$[Al(H_2O)_6]^{3+} + 3OH^- \rightarrow [Al(H_2O)_3(OH)_3] + 3H_2O$$

Traditional net precipitation equation:

$$A1^{3+}(aq) + 3OH^{-}(aq) \rightarrow Al(OH)_{3}(s)$$

and reaction conditions (concentration...)

Provided Head Complex Ions with NH₃ If a precipitate forms upon addition of NH₃(aq), the metal aquo complex ion is reacting with the SMALL AMOUNT of OH ions present in NH₃(aq): NH₃(aq) + HOH(l) → NH₄+(aq) + OH (aq) [Cu(H₂O)₄]²⁺ + NH₃ → light blue precipitate* DEMO Q. * What is the formula for the hydroxide precipitate? [Cu(H₂O)₂(OH)₂] (s)

Complex Ions

• Complex ions are the chemical basis for colorful paint pigments.

Aquo Complex Ion Reactions

• Colored transition metal ions alter color upon bonding to a different Lewis base.

 $[Cu(H_2O)_4]^{2+}$

 $[Cu(NH_3)_4]^{2+}$

• The charge on a complex ion will equal that of the metal ion when the metal ion is bonded to an uncharged Lewis base such as H_2O or NH_3 .

Aquo Complex Ion Replacements Reactions

Example 2: Replacement of water with chloride ions. Q. Complete the equation below:

$$[Cu (H_2O)_4]^{2+} + 4 Cl^- \rightarrow \underline{[Cu(Cl)_4]^{2-} + 4 H_2O}$$

DEMO

Tetra chloro copper(II) ion

*The charge on the complex ion alters due to reaction with a charged Lewis base

Lewis Acid-Base Reactions

• Complexes react if a better partner (acid or base) is available so as to form a more stable bond.

Hemoglobin is a complex of Fe that binds to/transports oxygen

Aquo Complex Ion Replacement Reactions

Example 4: The base ammonia in the Cu(II) product (ammine complex ion) will react and bond to a better acid than Cu(II) ions such as H⁺: $[Cu(H₂O)₄]²⁺ + 4 NH₃ \leftrightarrow [Cu(NH₃)₄]²⁺ + 4 H₂O$

Q. What will you observe upon adding acid (H⁺) to the deep violet-blue ammine product? DEMO

