Hourly I (March 17)

Review Notes

Posted on CTools and course website

Review Sessions

- Friday, March 13, 6 8 pm, 1210 chem.
 - ♦ 6-6:40 am: Experiment 1
 - ♦ 6:40 7:20 am: Experiment 2
 - ♦ 7:20 8: Experiment 3
- Monday, March 15, 5:30 7:30 pm, 1800 chem.
 - Question and answers

Acid - Base Neutralization (Parts 3 - 5)					
Neutra HNO ₃ acid	lization: + NaOH + base	→ →	NaNO ₃ salt	++++	HOH water
 The reaction of an acid with a base to produce salt and water 					

	Carboxylic Acids and Ionizable Protons															
Elect	roneg	ativity	/ of th	e elen	nents®											
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
IA	IIA	IIIB	IVB	VB	VIB	VIIB		VIIIE	3	IB	IIB	IIIA	IVA	VA	VIA	VIIA
Н																
2.1						0										
Li	Be					- 11						В	С	Ν	0	F
1.0	1.5				R	- C ·	- 0	- H				2.0	2.5	3.0	3.5	4.0
Na	Mg				<u></u>		e	.14				A1	Si	Р	S	CI
0.9	1.2				Cart	oxy	nc a	cia	grou	р		1.5	1.8	2.1	2.5	3.0
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br
0.8	1.0	1.3	1.5	1.6	1.6	1.5	1.8	1.8	1.8	1.9	1.6	1.6	1.8	2.0	2.4	2.8
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I
0.8	1.0	1.2	1.4	1.6	1.8	1.9	2.2	2.2	2.2	1.9	1.7	1.7	1.8	1.9	2.1	2.5
Cs	Ba	La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hø	T1	Pb	Bi	Ро	At
• Th	The electronegativity of H and O differ and therefore H in						n									
the	the COOH group is ionizable.															
• Th	The electronegativity of H and C are similar and therefore C-							re C-								
Нb	ond	s ai	re st	abl	e ar	d H	in	the	С-Н	bo	nd i	s N(DT i	oniz	abl	е

Titration	Stoichiometry

 Reaction stoichiometry is dependant on the number of ionizable protons in the carboxylic acid.
 <u>Acetic acid (Part 3)</u>: CH₃COOH + NaOH → CH₃COONa + HOH 1 mol

 Oxalic acid (Part 4):

 HOOC-COOH + 2 NaOH → 2COONa + 2HOH

 1 mol
 2 mol

- Compare the use of indicators for monitoring the neutralization of acetic acid with sodium hydroxide

Experiment variable

Indicators

Experiment constants

• Acid identity, concentration, and volume

Base identity and concentration

Q. An acid has an equivalent weight (EW) of 88.92 g/mole. List the number of any compound from the table that may be the acid.

Compound	Formula	MW
1. Ethanoic acid	CH3COOH	60
2. Butanoic acid	CH3CH2CH2COOH	88
3. Oxalic acid	HOOC-COOH	90
 1-methyl, 1,2 benzene dicarboxylic acid 	CH3C6H3(COOH)2	180

Equivalent Weight Errors

- 1. Acid mass is incorrect
- 2. Sample is not all transferred to titration flask
- 3. Buret tip is not filled with titrant
- Buret volume readings are incorrect
 Titration flask and contents not mixed properly
- Incorrect indicator used to monitor titration
- 7. Recorded volume of delivered base is incorrect

EW = <u>mass acid (g)</u> moles of OH⁻ neutralized

Q. Error 2 will result in an EW that is greater than true. Why?

- Determine the approximate volume of NaOH needed to neutralize a mass of unknown acid BEFORE conducting a quantitative determination of the equivalent weight by titration
- Practice melting point and equivalent weight skills with known compounds BEFORE testing the unknown
- Determine the approximate melting point range (e.g., 110 -130°C) BEFORE quantitatively determining the actual melting point range

See Table, p.118 Name	Formula	MW	EW	MP
2-hydroxybenzoic acid acetate	OCOCH ₃	180	180	135
trans-cinnamic acid	⟨◯⟩-сн =сн -соон	148	148	135- 136
2-chlorobenzoic acid	С ^{С1} соон	157	157	140
cis-butenedioic (maleic) acid	ноос соон	116	58	139- 140

Q. You titrate 0.175 g of an acid. 30.00 mL of 0.10 M NaOH neutralizes the sample. Identify the acid from the list below.						
Name	Formula	MW	MP			
2-hydroxybenzoic acid acetate	OCOCH3	180	135			
trans-cinnamic acid	СН =СН -СООН	148	135-136			
2-chlorobenzoic acid	OCI COOH	157	140			
cis-butenedioic (maleic) acid	ноос Коон	116	139-140			

Q. What is the identity of the acid?						
Name	Formula	MW	MP			
2-hydroxybenzoic acid acetate	OCOCH3	180	135			
trans-cinnamic acid	CH = CH - COOH	148	135-136			
2-chlorobenzoic acid	CI COOH	157	140			
cis-butenedioic (maleic) acid	Н НООС СООН	116	139-140			

