Hourly I (March 17)

Review Notes

· Posted on CTools and course website

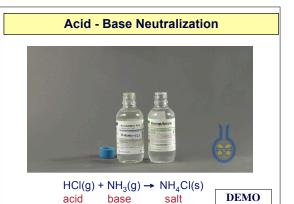
Review Sessions

- Friday, March 13, 6 8 pm, 1210 chem.
 - ♦ 6-6:40 am: Experiment 1
 - ♦ 6:40 7:20 am: Experiment 2
 - ♦ 7:20 8: Experiment 3
- Monday, March 15, 5:30 7:30 pm, 1800 chem.
 - ◆ Question and answers

E4 Acids, Bases, and Salts March 12 - 17

Session two:

- Complete E4, Parts 3 5.
- Complete the team report and discussion presentation.

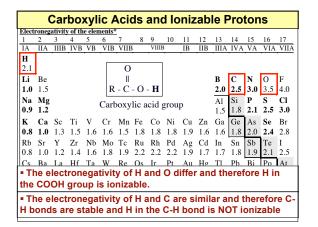


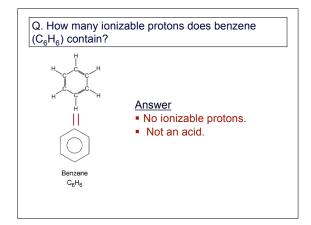
Acid - Base Neutralization (Parts 3 - 5)

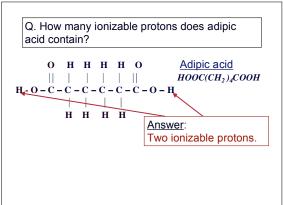
Neutralization:

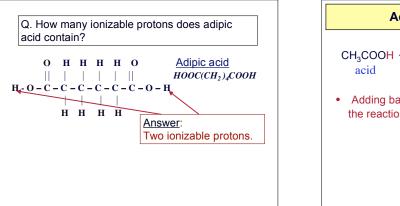
 HNO_3 + NaOH \rightarrow NaNO₃ + HOH acid + base \rightarrow salt + water

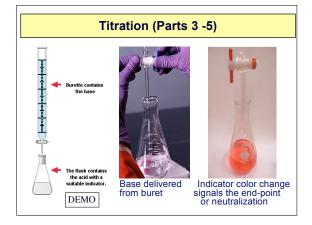
• The reaction of an acid with a base to produce salt and water


Neutralization Reaction Stoichiometry


 Neutralization reaction stoichiometry is dependant on the number of ionizable protons.


$$HNO_3$$
 + $NaOH \rightarrow NaNO_3$ + HOH
1 mol 1 mol


$$H_2SO_4 + 2 NaOH \rightarrow Na_2SO_4 + 2 HOH$$
1 mol 2 mol



Acid-Base Neutralization

$$CH_3COOH + NaOH \longrightarrow CH_3COONa + HOH$$

acid base salt water

· Adding base to the weak carboxylic acid drives the reaction (donation of proton/s) to completion

Titration Stoichiometry

Reaction stoichiometry is dependant on the number of ionizable protons in the carboxylic acid.

Q. How many mL of 0.10 M NaOH will be required to neutralize 10.0 mL of 0.10 M acetic acid?

Acetic acid

CH₃COOH + NaOH → CH₃OONa + HOH

• 1 mol of NaOH is required to neutralize one mol of acetic acid:

```
1 mmol acid = 1 mmol base

10.0 mL • 0.10 M acid = x mL • 0.10 M base

= 10 mL of 0.10 M NaOH
```

Watch the titration of 10.0 mL of 0.10 M acetic acid with 0.10 M NaOH $\,$

Note: Look for an error!

Titration (Parts 3 -5)

CH₃COOH + NaOH → CH₃COONa + HOH Reaction monitored with phenolphthalein indicator

Part 3 Acid-Base Neutralizations and Indicators

• Compare the use of indicators for monitoring the neutralization of acetic acid with sodium hydroxide

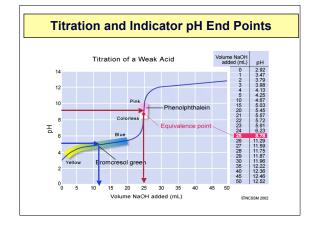
Experiment variable

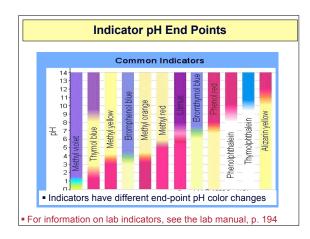
Indicators

Experiment constants

- · Acid identity, concentration, and volume
- · Base identity and concentration

Indicator End Point pH


• The pH interval where the indicator changes color


colorless pink
Phenolphthalein: pH 8.2 − pH 10.1
pH 9.1

Bromocresol green: pH 3.8 - pH 5.4

yellow

pH 4.6

Equivalence Point pH

- The pH of the salt and water products of the neutralization reaction = the equivalence point pH.
- The products may be acidic, or basic or neutral

Example:

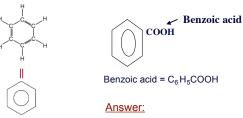
DEMO

Acid-Base Neutralization Products

Acetic acid + NaOH -→ sodium acetate + HOH •The salt and water product is not neutral

DEMO

Parts 4-5: Equivalent Weight (EW) of an Acid


 Mass (grams) of compound providing one mole of H⁺ or = Molecular weight # ionizable protons

Examples:

 H_2SO_4 = molecular weight = 98 H_2SO_4 = equivalent weight = 49

HCI = molecular weight = 36.5 HCI = equivalent weight = 36.5

Q. Themolecular weight of benzoic acid = 122. What is its equivalent weight?

Benzoic acid = C_6H_5COOH

EW = 122

Q. An acid has an equivalent weight (EW) of 88.92 g/mole. List the number of any compound from the table that may be the acid.

Compound	Formula	MW
1. Ethanoic acid	СН3СООН	60
2. Butanoic acid	CH3CH2CH2COOH	88
3. Oxalic acid	НООС-СООН	90
1-methyl, 1,2 benzene dicarboxylic acid	CH3C ₆ H3(COOH) ₂	180

Answer. Compounds # 2 and # 4.

A teammate titrates a carboxylic acid and calculates the EW of the acid to be 72.50g/mol. The result is correct within 2%. The MW of the acid = 1.5×10^2

Circle each structure that is consistent with the data.

 $\frac{\text{Adipic Acid, MW} = 146:}{\text{HO}_2\text{CCH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{CO}_2\text{H}}$

Trans-cinnamic acid, MW=148

Citric Acid, MW = 192: HO₂C-CH₂-C(OH)-CH₂-CO₂H | CO₂H $\frac{\text{Oxalic acid, MW} = 90}{\text{HO}_2\text{C} - \text{CO}_2\text{H}}$

Parts 4 -5: EW from Experiment Data

- Experimentally determine the equivalent weight of a carboxylic acid by titration
- EW = Mass (g) of acid providing 1 mol H⁺ or neutralizing 1 mol OH⁻.

 $EW = \frac{\text{mass acid} \quad (g)}{\text{moles of OH- neutralized}}$

Part 4: Equivalent Weight Practice

Mass of acid = _____; mol of OH- neutralized =

EW of Oxalic Acid (Part 4)

Q. 34.90 mL of 0.10 M NaOH neutralizes 0.22 grams of acid. What is the equivalent weight of the acid?

Answer.

0.22 g acid neutralized 3.49 mmol of NaOH.

The mass of acid needed to neutralize 1 mol = ?

63.04 g/mol = EW

Sample = oxalic acid dihydrate, HOOCCOOH•2H₂O

(MW = 126.07; EW = 63.04g/mol)

Equivalent Weight Errors

- 1. Acid mass is incorrect
- 2. Sample is not all transferred to titration flask
- 3. Buret tip is not filled with titrant
- 4. Buret volume readings are incorrect
- 5. Titration flask and contents not mixed properly
- 6. Incorrect indicator used to monitor titration
- 7. Recorded volume of delivered base is incorrect

EW = mass acid (g)
moles of OH- neutralized

Q. Error 2 will result in an EW that is greater than true. Why?

Part 5. Identification of an Unknown Acid

Identify a carboxylic acid from melting point and equivalent weight titration data

- Determine the approximate volume of NaOH needed to neutralize a mass of unknown acid BEFORE conducting a quantitative determination of the equivalent weight by titration
- Practice melting point and equivalent weight skills with known compounds BEFORE testing the unknown
- Determine the approximate melting point range (e.g., 110 -130°C) BEFORE quantitatively determining the actual melting point range

See Table, p.118 Name	Formula	MW	EW	MP
2-hydroxybenzoic acid acetate	OCOCH ₃	180	180	135
trans-cinnamic acid	О СН =СН -СООН	148	148	135- 136
2-chlorobenzoic acid	COOH	157	157	140
cis-butenedioic (maleic) acid	HOOC COOH	116	58	139- 140

Q. You titrate 0.175 g of an acid. 30.00 mL of 0.10 M NaOH neutralizes the sample. Identify the acid from the list below.

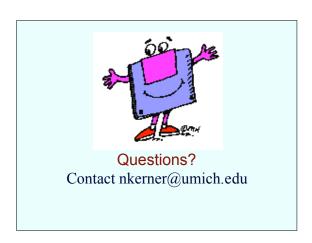
Name	Formula	MW	MP
2-hydroxybenzoic acid acetate	OCOCH ₃	180	135
trans-cinnamic acid	(CH = CH - COOH	148	135-136
2-chlorobenzoic acid	©CI COOH	157	140
cis-butenedioic (maleic) acid	HOOC COOH	116	139-140

Equivalent weight determination.

1) Determine mol of NaOH the acid has neutralized.

Fact: The acid mass neutralized 30.00 mL of 0.10 M NaOH

mol OH⁻ = V(L) x M NaOH
=
$$0.0300$$
 x 0.10 mol
= 3.0×10^{-3} mol


Equivalent Weight determination.

2) Determine the mass of acid that would neutralize one mol of hydroxide ions.

Known: $0.175 \text{ g} = 0.0030 \text{ mol OH}^-$ X g acid 1 mol OH⁻

x = 58 g

Q. What is the identity of the acid if EW = 58? MP Formula COOH 2-hydroxybenzoic acid acetate 180 \bigcirc 0COCH3 trans-cinnamic acid 148 135-136)-CH = CH -COOH 2-chlorobenzoic acid 157 140 cis-butenedioic (maleic) acid 116 139-140

