IV. Chemical Shifts - δ unit

Each H nucleus in a molecule has a different degree of electron surrounding it. Higher the electron density is found surrounding the ¹H nucleus, more the external magnetic energy is needed for the excitation of that ¹H nucleus as the electron *shields* the nucleus. Where each ¹H peak appears in the ¹H NMR spectrum is the reflection of *what kind of a chemical environment* each ¹H nucleus is in,* thus the name “chemical shift.”

*This is manifested in the electron density surrounding each ¹H nucleus.

NMR spectra are obtained usually in CDCl₃ (99.8% D and 0.2% ¹H) with (CH₃)₂Si [tetramethylsilane or TMS] as internal reference in a certain operating magnetic field such as 200 MHz, 400 MHz, etc.

\[
\text{H}_3\text{C} = \text{CH}_3 \quad \text{in CDCl}_3 \text{ on a 200 MHz magnet NMR spectrometer:}
\]

- residual CHCl₃ in CDCl₃
- lower field or down-field
- acetone
- TMS
- higher field or up-field

"The peak of acetone ¹H's appears as one peak at 440 Hz down-field from TMS on a 200 MHz NMR spectrometer"

\[
\text{H}_2\text{C} = \text{CH}_3 \quad \text{in CDCl}_3 \text{ on a 400 MHz magnet NMR spectrometer:}
\]

- residual CHCl₃ in CDCl₃
- lower field or down-field
- acetone
- TMS
- higher field or up-field

"The peak of acetone ¹H's appears as one peak at 880 Hz down-field from TMS on a 200 MHz NMR spectrometer"

Note: MHz = \(10^6\) Hz
MHz (mega Hertz); Hz = cps

Since these are too lengthy descriptions of ¹H NMR data and the acetone peak appears at a down field position from TMS proportionally to the strength of an operating magnetic field, the following dimension less ppm unit has been introduced.

\[
\begin{align*}
\text{(H}_3\text{C)}_2\text{C}=\text{O} \text{ on a 200 MHz NMR spectrometer: } 440 \text{ Hz} / 200 \times 10^6 \text{ Hz} &= 2.2 \times 10^{-6} = 2.2 \text{ ppm} \\
\text{(H}_3\text{C)}_2\text{C}=\text{O} \text{ on a 400 MHz NMR spectrometer: } 880 \text{ Hz} / 400 \times 10^6 \text{ Hz} &= 2.2 \times 10^{-6} = 2.2 \text{ ppm}
\end{align*}
\]

Now, these are independent of the strength of an operating magnetic field.
Conversely, 1 ppm on a 200 MHz NMR spectrometer corresponds to: $1 \times 10^6 \times 200 \times 10^6 \text{Hz} = 200 \text{ Hz}$ and 1 ppm on a 400 MHz NMR spectrometer corresponds to: $1 \times 10^6 \times 400 \times 10^6 \text{Hz} = 400 \text{ Hz}$

This ppm scale relative to TMS and the increasing value to the lower magnetic field (i.e., to the left from TMS) is called “the δ-scale.” The ^1H peaks of most of the organic compounds fall in between $\delta = 0 \sim 10 \text{ ppm}$ (see Table 10.3 on p. 361 of Ege’s book).

The Factors That Affect Chemical Shifts

1. **Hybridization**
 - sp^3: typically $\delta = 0.5 \sim 1.5 \text{ ppm}$
 - sp^2: typically $\delta = 5 \sim 6 \text{ ppm}$
 - sp: typically $\delta = 7 \sim 8 \text{ ppm}$

 ![Note: aromatic H's](image)

 However, $\text{-C = C} + \text{H} \delta = \sim 2.2 \text{ ppm}$

2. **Electron Density on each ^1H**

 $$H_{\text{effective}} = H_0 (1 - \sigma)$$

 - H_0: applied magnetic field
 - σ: shielding constant, $10^2 \sim 10^5$ (reflects chemical environments of a specific ^1H)

 - Increasing electron density on a ^1H → more shielding (larger σ)
 - → more external H_0 to reach $H_{\text{effective}}$ → ^1H peak at a higher field → a smaller δ value for the peak.

 Examples:
 - (i) tetramethylsilane (TMS):

 ![Electronegativity: 2.1](image)

 - Electronegativity: 2.1
 - e.n.: 1.8
 - Consequently, the electron density of the ^1H's of the CH$_3$ increases
 - \rightarrow ^1H's of the CH become highly shielded \rightarrow requires more external magnetic field energy.

 Therefore, (H,C)$_3$Si ^1H’s appear at a significantly higher field than ^1H’s in most of the organic compounds; one of the reasons why TMS is used as the internal reference compound.

 - (ii) Halomethanes [H$_3$C-X]

 ![Electronegativity: 4.0](image)

 - δ: 4.30 \rightarrow ^1H's least shielded; most deshielded
 - e.n.: 2.5
 - Electronegativity: 4.0

 ![Electronegativity: 3.0](image)

 - δ: 3.05 \rightarrow ^1H's more shielded
 - e.n.: 2.5
 - Electronegativity: 3.0

 ![Electronegativity: 2.70](image)

 - δ: 2.70 \rightarrow ^1H's more shielded
 - e.n.: 2.5
 - Electronegativity: 2.70

 ![Electronegativity: 2.10](image)

 - δ: 2.10 \rightarrow ^1H's more shielded
 - e.n.: 2.5
 - Electronegativity: 2.10

 Therefore, ^1H's of $\text{H}_3\text{C-X}$ appear at higher fields than ^1H's of $\text{H}_2\text{C-X}$, indicating an increase in electron density and shielding.
(iii) $H_2C\text{---OR}$ e.n.: 3.5 \hspace{1cm} $H_2C\text{---NR}_2$ e.n.: 3.0 \hspace{1cm} $H_2C\text{---SR}$ e.n.: 2.5

(iv) alkenes vs α,β-unsaturated ketones

(3) Magnetic Anisotropy ----- A through-space effect

(i) Aromatic Ring-Current Effect

These aromatic delocalized 6 π electrons start circulating into one direction in an external magnetic field (H_0). This circulation of the 6 π-electrons results in the induction of a secondary magnetic field following the Fleming's rule.

Date: January 9, 2013
(3) (i) Aromatic Ring-Current Effect (continued)

H's located inside this imaginary cone requires more external magnetic field power for their excitation → high-field shifted; smaller δ values

Example:

Strongly shielded by the ring current effect of the benzene 6π-electrons

Strongly deshielded

H's located outside the cone, including the H's on the benzene ring, requires less external magnetic field power (i.e., energy) for their excitation → down-field shift; larger δ values

The closer the H is to the center of the benzene ring, the stronger the extent of the ring current effect is.

(ii) Acetylene groups.

\[R - C \equiv C - H \delta 2.2 \]

In a magnetic field, these π-electrons induce a secondary magnetic field

As this H is quite close to the center of the C ≡ C bond, an extremely strong shielding effect is observed for this H.

V. Integration

The peak intensity is proportional to the number of H’s belonging to each peak in the case of \(^1\)H NMR.

These 12 and 36 represent the integrated areas of each peak and their ratios correspond to the ratios of the number of H’s belonging to each peak, i.e., \(12 : 36 = 1 : 3\). This could mean 1 H and 3 H’s, 2H’s and 6 H’s, or 3 H’s and 9 H’s, etc.
Integration (continued).

- If there is a 1 : 1 mixture (on a molar basis) of acetone and chloroform [CHCl₃], the integrated ratio of each of the two peaks should be 1 : 6.

Conversely, if the ¹H NMR spectrum of a mixture of acetone and chloroform shows a 1 : 1 intensity by integration, what is the molar ratio of these two solvents in the solution?

VI. Spin-Spin Couplings [Nuclear Spin-Nuclear Spin Interactions]-Through-Bond Interactions

Acyclic Systems

The two spin states of H₁ interact, through bonds, with the two spin states of H₂, called "coupling," resulting in the formation of the spectral pattern consisting of a pair of doublets.

These H's are called a 3-bond neighbor to each other.
V. Spin-Spin Coupling (continued)

3-Bond Neighbor Analysis:

\[
\text{has 2 3-bond neighbors (i.e., neighboring H's)}
\]

\[
\text{have 2 3-bond neighbors}
\]

\[
\text{have 4 3-bond neighbors}
\]

\text{ethyl acetate [H}_3\text{C-CH}_2\text{-O-C(=O)-CH}_3\text{]}

\text{3 chemically equivalent H's; have 2 3-bond neighbors}

\text{2 chemically equiv. H's; have 3 3-bond neighbors}

\text{singlet}

\text{1H NMR spectrum of ethyl acetate}

\text{integration values}

\text{integration or intensity ratio}

\text{For the CH}_3\text{ H's: there are two 3-bond neighbors.}

After the interaction with the first 3-bond neighbor (assuming } J = 6 \text{ Hz) }

After the interaction with the second 3-bond neighbor - each of the above doublet peaks splits to a doublet

\text{peak intensity ratio}

\text{1 : 2 : 1}
V. Spin-Spin Coupling (continued)

For the CH₂ H's: there are three 3-bond neighbors.

After the interaction with the first 3-bond neighbor (assuming $J = 6$ Hz)

After the interaction with the second 3-bond neighbor - each of the above doublet peaks splits to a doublet

Thus, becoming a triplet with a 1 : 2 : 1 intensity ratio.

Now, the interaction with the third 3-bond neighbor - each of the 1 : 2 : 1 triplet peaks splits to a doublet

Overall, the CH₂ peaks show up as a 1 : 3 : 3 : 1 quartet.

In general, in an sp³ acyclic system:

If an H has an n-number of 3-bond neighbor H’s, the NMR signal of the former splits into an $(n + 1)$-number of peaks. This is due to the fact that all of the vicinal couplings (i.e., 3J) are virtually identical in a freely rotating acyclic system.

For example,

- have 1 3-bond neighbor $\rightarrow (1 + 1) = 2$ peaks: doublet
- has 6 3-bond neighbors $\rightarrow (6 + 1) = 7$ peaks: septet
- have no 3-bond neighbors $\rightarrow (0 + 1) = 1$ peak: singlet
V. Spin-Spin Coupling (continued)

“A 1H-1H spin-spin coupling exists between any 2- and 3-bond neighboring H’s. However, the only couplings that can be observed in the spectrum are those between chemically non-equivalent H’s.”

1. singlet
 These 3H’s are homotopic.

2. singlet
 These 3H’s are homotopic.

3. 2J is not observed in the 1H NMR spectrum. These 2H’s are chemically equivalent (i.e., enantiotopic) and appear as a quartet due to 3J with the methyl H’s (three 3-bond neighbors).

4. singlet (no 2J can be observed in the 1H NMR spectrum).
 These 2H’s are homotopic.

5. Alkenic H’s
 $^3J_{trans} = 12 - 20$ Hz
 $^3J_{cis} = 6 - 12$ Hz

For a pair of alkene stereoisomers:

$^3J_{trans} > ^3J_{cis}$
V. Spin-Spin Coupling (continued)

(6) vinyl acetate

\[\delta 2.15 \text{ (singlet)} \]

\[
\begin{array}{c}
\text{CH}_3 \\
\text{O} \\
\text{CH}_3 \\
\end{array}
\]

4.88 (doublet of doublets)

4.57 (doublet of doublets)

down-field shifted due to the strong inductive effect by the oxygen atom

7.27 (doublet of doublets)

These are high-field shifted due to the following resonance contribution:

The coupling constants among these three H's are:

\[^3J_{AX} = 14.2 \text{ Hz (trans-vicinal); } ^3J_{BX} = 6.5 \text{ Hz (cis-vicinal); } ^2J_{AB} = 1.2 \text{ Hz (geminal)} \]

For H_X:

Upon interaction with H_A

Then, upon interaction with H_B, each of the doublet splits into a doublet

\[^3J_{AX} \neq ^3J_{BX} \]

Unlike those in an acyclic system, these middle two peaks do not overlap, thus not producing a 1 : 2 : 1 triplet pattern.

The situation is the same for both H_A and H_B. Therefore, H_A and H_B each shows a doublet of doublets.
V. Spin-Spin Coupling (continued)

(7) Aromatic Hydrogens: typically $^3J \sim 8 \text{Hz (ortho)}$; $^4J \sim <1 \text{Hz (meta)}$; $^5J \sim 0 \text{Hz (para)}$

(a) *para*-Disubstituted Benzene

![Chemical structure]

- triplet (2 3-bond neighbors) at 1.2 ppm
- quartet (3 3-bond neighbors) at 2.8 ppm

Two groups of chemically equivalent aromatic H's:
each shows up as a doublet as a result of $^3J_{AB} \sim 8 \text{Hz}$
with a 2 H-intensity.

(b) Three isomers of nitroaniline

<table>
<thead>
<tr>
<th></th>
<th>ortho</th>
<th>meta</th>
<th>para</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.82 ppm (d)</td>
<td>6.95 (d)</td>
<td>7.48 (s)</td>
<td>6.61 (d)</td>
</tr>
<tr>
<td>7.34 ppm (t)</td>
<td>7.36 (t)</td>
<td>7.55 (d)</td>
<td>7.93 (d)</td>
</tr>
<tr>
<td>8.08 ppm (d)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.67 ppm (t)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Chemical shifts of each of these aromatic H's are explainable in terms of resonance
contributions of the NH$_2$ and NO$_2$ groups.

![Diagram]

(c) Long-range couplings

- doublet at 7.40 ppm
- singlet at 2.5 ppm
- a doublet of doublets at 8.04 ppm

3J (ortho coupling) 8.6Hz

4J (meta coupling) 2.2Hz

5J (para coupling) $\sim 0 \text{Hz}$