Amperometry & Voltammetry

•Non-equilibrium electrochemistry!

•Based on <u>Electrolytic Cells</u>---apply external voltage_to pair of electrodes to force rxn to occur--get current flow---current α [conc]

$$E_{elect} = E_{ox/red}^{o} + \frac{0.059}{n} \log \frac{a_{ox}}{a_{red}}$$

Control potential of working electrode---
 a_{ox} and a_{red} must adjust and change activities
based on applied potential to electrode

Lets look again at following cell:

 Pt/H_2 (1 atm), HCl (1M), AgCl_(s)/Ag

 $E_{cell} = E_{Ag/AgCl} - E_{NHE} = +0.222V$

Now let us hook up battery to cell which opposes EMF of this galvanic cell:

-if battery applies < 0.222V; then Cell will discharge as before---with Ag/AgCl electrode being cathode -if battery applies exactly 0.222V; cell will be at equilibrium--nothing will happen--NO current---analogous to null point experiment -if battery applies > 0.222V--we have electrolytic cell, and the cathode would be the Pt electrode--- and the anode would be the Ag/AgCl electrode

Cathode of original cell becomes anode---Anode of orginal cell becomes cathode

For electrolytic cell:
$$E_{appl} = E_w - E_{ref} - iR$$

R=resistance to current flow---usually due to resistance of electrolyte solution---but also due to resistance to mass transfer of species to electrode surfaces (diffusion)!

Now---replace NHE with plain Pt only electrode--- no H_2 gas; and place Ag/AgCl in separate compartment---and add Ox^{n+} (but no red)

There is no reversible redox couple at Pt electrode-would not yield stable potential if you try to measure cell potential---because Red is not present

Now if you start applying external voltage---gradually making Pt more negative:

 $E_{1/2}$ usually close to E^o value for ----

 $Ox + ne^{-} \le Red$

if this reaction is reversible at Pt working electrode surface---however, if <u>electron transfer kinetics</u> are slow for <u>heterogeneous</u> reaction---then potential required to reduce Ox ----> Red will be more negative than E° value---

<u>Diffusion</u>---key form of mass transport for all amperometric/voltammetric measurements--- always present, whether you have convection (stir solution) or not!

Occurs due to concentration gradient of electroactive species from area of higher concentration to area of lower concentration

$$flux = rate = D\frac{dC}{dx}$$

Fick's law of diffusion!

D= diffusion coeff.; cm^2/sec dC/dx = concentration gradient--change in conc. of electroactive species per unit distance

 $dx = \delta$ = diffusion layer thickness

For any voltammetric/amperometric experiment--

- $i = nFAm_{o} (C_{o}^{b} C_{o}^{x=0})$
- $i_l = nFAm_o C_o^b$ ----when conc. of electroactive species approaches zero near the surface----rate of electron transfer rxn at surface of electrode is limited by diffusion--how fast Ox moves up to surface!-- $i_l = k [ox]$ ---linear relationship

A= area of electrode (cm²); m_0 =mass transfer coeff. (D/ δ)

The limiting current will be directly proportional to conc. of electroactive species!

If you do <u>amperometry</u>---you simply apply a constant voltage to working electrode---usually at potential where limiting current will occur---and monitor current----

In <u>voltammetry</u>--we scan E_{appl} and record current as the voltage applied is changing!

note: If Red only was present--we would need to apply + voltage to oxidize----everything is same except $i_l = k C_{red}$

Problem with measuring peroxide---amperometrically---reaction to generate H_2O_2 from glucose is limited by amount of oxygen present in blood sample----

<u>To avoid oxygen dependence</u>----use different electron acceptor---Ferrocenium derivative!

Three electrode amperometric/voltammetric cells!--used when current flowing through reference electrode would change potential of the reference electrode--by changing the surface concentration of the species that controls the potential (e.g., Ag/AgCl : AgCl + e^- --->Ag + Cl⁻)

[Cl⁻] controls $E_{Ag/AgCl}$ value--if reduction occurs then [Cl] increases near surface of elect- $E_{Ag/Cl}$ --decreases

in 3-electrode config--no current passes through reference electrode---current passes through working elect. and auxiliary (counter)electrode!

Working electrode:

In <u>amperometric or voltammetric techniques</u>---we often use method of <u>Standard Addition technique</u>---to obtain more accurate analytical results! Can't use calibration method--because slope-e.g., sensitivity toward analyte are different in the presence of sample matrix---then in matrix used to prepare standards!!--(**called Matrix Effect!!**)

[ascorbate], mM

In voltammtric/amperometric techniques---when bare electrode are used----can often get matrix effect---(e.g. difference in mass transport of analyte to surface of electrode in presence of sample components (viscosity); also adsorption of species blocks sites on elect. for e^- transfer to occur (appears like less area of electrode).

For standard addition method you do following:

- -obtain signal from sample directly--- I_x
- -spike sample with known amount of standard analyte x, to change concentration, and obtain a new signal $-I_{x+s}$
- -sometimes we make multiple standard additions (we shall see), and record the new signal each time

In effect, we are calibrating *in situ*---in the presence of the sample matrix---determining the sensitivity (slope) toward the analyte!

For single standard addition, we can use equation:

Multiple Standard Addition--

better since you are using more concentrations to determine

6

<u>**Polarography</u>**--special case of Voltammetry----uses dropping mercury electrode (DME)--</u>

> DME give fresh electrode surface all the time---no fouling of electrode by adsorption of species in sample!

more sensitive for measuring Ox

Can't use polarography to measure Red---since at high + E_{appl} , Hg -->Hg⁺² + 2 e⁻

can detect down to 10⁻¹⁰ M metal ion in original sample!

Stripping Analysis---most sensitive of all voltammetric techniques--used to simultaneously detect metal ions----based on different E⁰ values!

Usually use Hg film electrode---thin layer of liquid Hg on carbon electrode;

first step---apply very negative voltage to Hg film---and stir solution---to plate reduce all metal ions as M^o(Hg) into Hg electrode.---M⁺ⁿ+ne⁻ --->M⁰⁻ longer you do this---more sensitive since you plate all metal ions out!

Then scan potential more positive and monitor current-due to oxidation $M^{O}(Hg) \rightarrow M^{n+} + ne^{-}$

<u>Techniques based on exhaustive electrolysis of sample</u>---use large area electrode, and stir sample, so that can electrolyze all of Ox or Red analyte----

<u>Electrogravimetry</u>-----We talked about already---based on plating metal out---and weighing electrode!

coulometry---two methods;

-integrate total current flow over time---for given redox reaction at large area electrode; As analyte is consumed, and its conc. decreases, limiting current also decreases----

<u>Must have 100% current efficiency</u>---which means current measured as function of time can only come from analyte----must choose applied potential to electrode carefully to make sure other species (including solvent) are not being electrolyzed at that applied potential! <u>coulometric titrations:</u> Use constant current supply--to generate titrant at known rate (based on constant current)

e.g., coulometric titration of H₂S ----

analytical reaction is : $I_2 + H_2S - S_{(s)} + 2H^+ + 2I^-$

need to generate I_2 coulometrically at large area electrode---that is anode in cell; apply constant current through electrodes----Add excess NaI to sample----: 2 I⁻ ----> $I_2 + 2 e^-$ at anode

constant current source

current x time = coulombs (q)

 $q/nF = moles of I_2$ generated to get to endpoint Detect endpoint in this case by adding starch to solution---gives blue color with excess I_2 Determination of cyclohexene---by coulometric titration with Br₂

Br₂ + cyclohexene ----> dibromocyclohexane

(bromine adds across double bond!)

Use excess NaBr as reagent---and large electrode with constant current source to generate Br_2 ---

<u>Use another pair of electrodes (Pt)</u> electrodes as indicator electrodes to signal the first excess of Br_2 in the sample--apply small voltage between two electrodes----(0.2 V or so)---can only get current flow if there is both Ox and Red in solution (red= Br; $Ox = Br_2$) ---so first appearance of current signals the endpoint! (total of 4 electrodes are used---two to generate the Br_2 and two to detect the presence of excess Br_2)