Optical Spectroscopy--Molecular and Atomic Part II. Con't of Molecular Spect.

Analytical Spectroscopy: method to examine or measure the amount of species present based on a selective and characteristic interaction of the analyte with electromagnetic radiation

UV-Visible Absorption--more details! Fluorescence (Luminescence) Spectroscopy Introduction to Basic instrumentation

Basic Types of Spectroscopy

Absorption Spectrometry

Absorbance

Transmittance T =

$$=\frac{P}{P_0}\approx\frac{P_{sample}}{P_{blank}}$$

Absorbance

$$A = -\log T$$

Power

$$P = \frac{energy}{area \cdot \sec}$$

Beer's Law

$$A = abc = \varepsilon l[C]$$
$$L$$

molar absorptivity

$$\varepsilon = \frac{L}{cm \cdot mol}$$

- cuvette is quartz for UV; glass for visible
- 1 cm is standard path length
- surface must be highly polished and clean to minimize scattering and reflection

Simple Spectrophotometer Dual-Beam

Light Sources

- Tungsten (incandescent) lamp
 - for visible and near IR spectra
 - 350 to 900 nm
 - basically a "white" hot wire
 - D_2 or H_2 arc lamp
 - for UV spectra

$$D_2 \xrightarrow{E_e} D_2^* \longrightarrow D' + D'' + hv$$

 $E_{e}=E_{D_{2}^{*}}=E_{D'}+E_{D''}+h\upsilon$

kinetic energy of the photons

<u>**Continuum Sources</u>----**yield light over a wide range of adjacent wavelengths---but intensities are not same at different wavelengths!</u>

Wavelength Selection

Prism Monochromator

Grating Monochromator

Monochromator: optical device that selects one wavelength (or band of similar wavelengths)

Refraction (bends light):

- Light slows down in dense materials like quartz (SiO₂)
- Angle that light bends depends on the wavelength

λ	η
1,060	1.4497
545	1.4601
365	1.4744
215	1.5343
215	1.5515

Inside of high quality UV-vis spectrophotometer quite complex

(b)

Resolution in Spectroscopy

Controlled by quality of monochromator (prism not as good as grating!) Also ---by slit width of monochromator;

Resolution is the ability to distinguish between unique spectral features

- for example, different analyte species
- $\Delta\lambda$, numerical figure for resolution

• the higher the resolving power the better the resolution (possible)

$$R = \frac{\lambda}{d\lambda} = (nN)$$

• actual power throughput is Gaussian (normal distribution)

Wavelength Selection, Scanning Monochromator

Photosensitive Detectors

Photocathode

- Cathode surface emits $electron \epsilon_{athode}$ when excited by a photon
- Surface is a special alloy:
 - mixed alkali is common
 - Ga/As gives flattest response over the widest spectral width
- •Single stage transducer
 - (one cathode one anode)
 - relatively low gain

Detectors with different surfaces have different sensitivities in over the wavelength range of interest!

Simple Mutliplex Spectrometer

diode array spectrophotometer---don't need to scan monochromator to take spectrum--Photodiode array all wavelengths detected simultaneously detector with photodiode array!

Photodiode

- Semiconductor diode: transducer that acts like a one way switch
- Diode under reverse bias
- typical condition steady-state, or at rest

(a)

Diode Arrays

Advantages: tiny and rugged -large bandwidth -good dynamic range -lower power required Disadvantage: -devices tend to be noisier than the PMT

•Linear diode array allows simultaneous detection of all wavelengths!

• this is a huge advantage in terms of speed of analysis

•The full spectrum can be acquired almost instantaneously (1-2 ms)--good for LC detectors---can obtain entire spectrum of eluting analyte!!

Molecular Photon Emission

- Not all molecules fluoresce, even though they absorb.
- Non-radiative process can dominate
- phosphoresence also occurs for select syster

Quantum Yield---# photons emitted Ground state as fluorescence--divided by # of Figure 15-1 photons absorbed-the most fluorescing species have Q near 1.

excited singlet state---electron promoted has spin in opposite direction as electron in ground state orbital

Excited vibrational

and rotational

on intensity of source--and quantum yield of molecule (analyte) (measuring signal on top of nearly zero background--not like UV-vis)

Fluorescence Red-Shift

- Vibrational and non-radiative energy losses reduce the energy of the photons released from the molecule.
- The red-shift of fluorescence can be very useful.
- No background from electrically scattered photons (source)
- finger-print the molecule, since few molecules are likely to have the same λ_{max} absorption and λ_{max} fluorescence

Figure 15-2 Fluorescence excitation and emission spectra for a solution of quinine.

Applications of Fluorescence-and also other luminescence methods

- Most applications are quantitative
- most exploit the verylow detection limits
- fluorescence quenching
 - powerful indirect method
- <u>chemluminescence</u>: light emitted as a side-product of a chemical reaction
 - does not require a light source
 - great potential for in vivo, or remote applications

fluorescein a common indicator

Fluorescence Probes for Single Cell or Single Molecule Applications

•Rare earth, transition metal chelate complexes

- •Advantages: indestructible high ε . long excited state
- •Disadvantages: long excited state can be toxic

•fewer excitation/emission cycles/sec

•Polymer bead encapsulated metal chelates PEBBLES (Kopelman, UM)

•Quantum dots - submicron semiconductor particles: Cd/Se

(Alivosatos, UC Berkeley; Nie, Indiana)

- •Advantages: indestructible high density (sensitivity) low toxicity
- •Disadvantages: not applicable to single molecule applications

Immunoassays use Fluorescence

