
Optical Atomic Spectroscopy

•Methods to measure conentrations of primarily metallic elements at < ppm levels with high selectivity!

•Two main optical methodologies--Atomic Absorption--need ground state atoms -Atomic Emission--need excited state atoms

•Also---type of hybrid methods--ICP-MS (inductively coupled plasma with mass spectrometry detection)

part of emission spectrum from atomization of steel--note how narrow the lines are --expressed in cm⁻¹; $\lambda = 1$ /wavenumber

Ways to form gas phase atoms (called atomization)

- Flames----aspirate liquid sample into flame!--Heat of the flame desolvates species, creates salts of ions, and then further heating in flame decomposes these particles into gas phase atoms ---<u>Temperature of flame is critical</u>---for atomic absorption--want cooler flame---but still hot enough to get good atomization efficiency;
 - ---For atomic emission--want <u>hotter</u> flame--to get more gas phase atoms in excited state!

Boltzmann Distribution:

$$\frac{N^*}{N_o} = \left(\frac{g^*}{g_o}\right) e^{-\frac{\Delta E}{kT}}$$

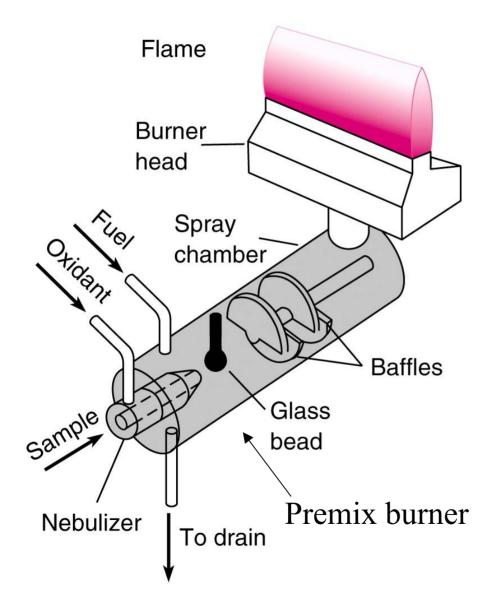
 $k = 1.381 \text{ x } 10^{-23} \text{ J/K}$

 $N^* = \#$ atoms in excited state $N_o = \#$ atoms in lower energy level Ratio--relative population g^* and g --degeneracies--effective # of possible states at each energy level sample values---from Boltzmann equation;

for Na⁰ (for 3.371 J/atom energy difference)($g^*/g_0^= 2$): (a) 2600° K; N^{*}/N₀ = 0.000167 (a) 2610° K; N^{*}/N₀ = 0.000174

% difference = 4%; small change in temperature significantly changes the ratio of N^{*}/N_o ---and since emission intensity would depend on N^{*} value---then <u>atomic emission techniques</u> would be most influenced by this change in temperature.

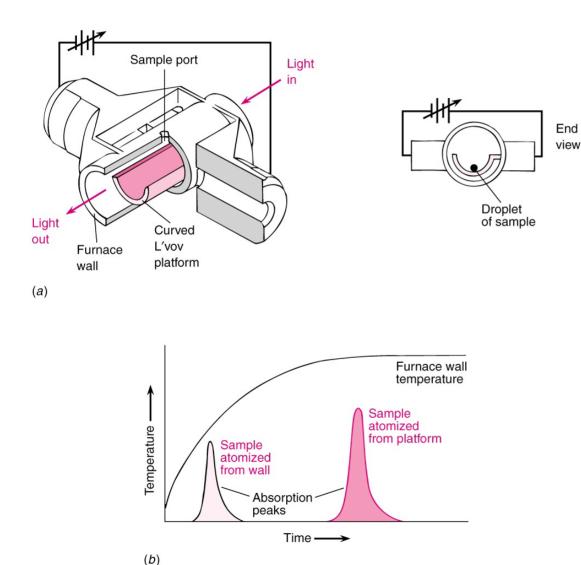
However, if you were doing AA (atomic absorption)---this small change in temperature would have very little effect---since 99.8% of the sodium atoms are in ground state and small change in temperature may change this to 99.7%---but this would not effect the AA absorbance signal measured!


more example data from boltzmann (assuming $g^*/g_0=1$)--

N*/N_o values

	<u>2500° K</u>	<u>6000° K</u>				
250 nm	1.0 x 10 ⁻¹⁰	6.8 x 10 ⁻⁵				
500 nm	1.0 x 10 ⁻⁵	8.3 x 10 ⁻³				
750 nm	4.6 x 10 ⁻⁴	4.1 x 10 ⁻²				

note--even at high temperatures----always more species in ground state---however, 100 fold or greater increase in N^*/N_o values---**means that emission spectroscopy at high temperatures will be much more sensitive**!!--(lower detection limits).

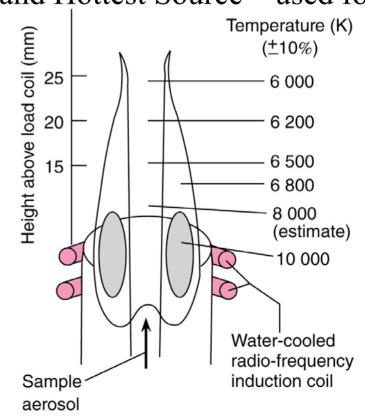

Flames--Con't ; temperature depends on **fuel** and **oxidant** used!

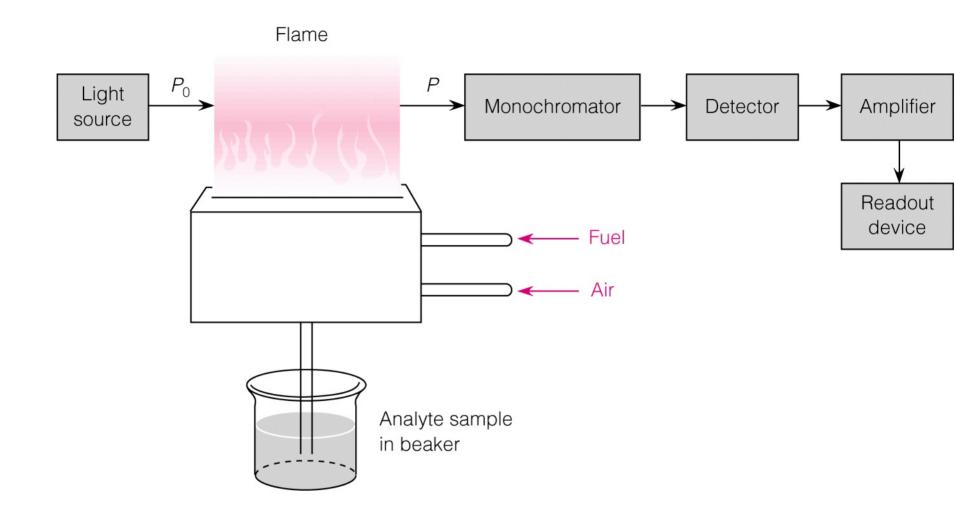
Acetylene/air- 2400-2700 K H₂/O₂ --2300-2400 K Acetylene/O₂ -3300-3400 K

nebulizer----fine (tiny) droplets of sample ----allows fast desolvation when small droplets enter flame! --Residence time in flame is very short---so time for desolvation and atomization is very short!--<u>THIS LIMITS</u> <u>ATOMIZATION EFFICIENCY</u>

Graphite Furnace----Second way to form gas phase atoms---used exclusively for AA (flameless AA).

•small volume of sample deposited within graphite tube or on graphite platform

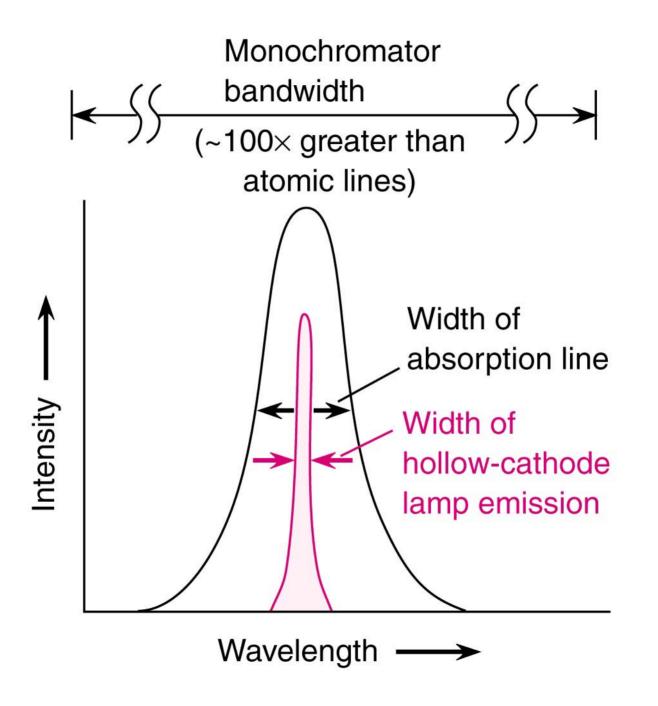

•wall of tube is made hotter and hotter in 3 steps by flowing current through the wall-- with external power supply (ohmic heating).


•first use low temp to dry the sample---then heat the wall to 1400 K for short period to ash/char--then up to 2550 °K for few seconds---to form gas phase atoms <u>Furnace gives better detection limits</u> than flame for AA--because you get much great atomization efficiency---(I.e., greater fraction of what you put in as sample is actually converted to gas phase atomsyou control time of desolvation, ashing, etc.---entire plume of analyte atoms comes off wall into path of light beam!

Inductively Coupled Plasma ---- 3rd and Hottest Source---used for ICP-emission, ICP-MS

<u>use Ar gas</u>---and ionize it ---to create $He^+ + e^-$ --then use oscillating magnetic field produced by induction coil to cause hot plasma of ionized gas!

Very expensive to, both to purchase and operate!!



schematic of typical "Flame" AA instrument!--note that monochromator is place after flame---to get rid of large background of white light from flame itself--

Hollow Cathode lamp (HCL)---used only for AA---as source of radiation of given element being detemined. Solid element is present on cathode (M^o) High voltage ionizes gas in tube---creates Ar⁺ or Ne⁺ ions at anode; these are accelerated to cathode surface---and "sputter" element off of the cathod when the strike surface---creates gas phase M^{o*} and excited state atom---that relaxes and give off photon that

is unique in wavelengths for that given element!

ICP-MS; most sensitive of all atomic methods---not strictly a spectroscopy--since we do not measure the emission of radiation from excited state atoms!

In ICP-MS---we use high temperature of an ICP-torch to actually ionize a small fraction of the analyte species--(e.g., Cu, Pb, Hg, Zn, etc.). ----by ionizing---we create M⁺ species in gas phase!

then these ions are accelerated into a Mass Spectrometer---and ions with different mass/charge ratios are separated and detected.

	Li 0.7 2 0.1 0.0002	Be 0.07 1 0.02 0.0009Fe 0.7 5Detection limits (ng/mL)0.02 0.00090.7 5 Flame atomic absorption 0.02 0.008Inductively coupled plasma emission bornic absorption 										B 1 500 15 0.0008	C 10 —	N	0	F	Ne	
	Na 3 0.2 0.005 0.0002	Mg 0.08 0.3 0.004 0.0003			- Inductively coupled plasma-mass spectrometry							netry	AI 2 30 0.01 0.0002	Si 5 100 0.1 <0.0001	P 7 40 000 30 <0.0001	S 3 	CI	Ar
	K 20 3 0.1 0.0002	Ca 0.07 0.5 0.01 0.007	Sc 0.3 40 0.0002	Ti 0.4 70 0.5 0.004	V 0.7 50 0.2 0.0003	Cr 2 3 0.01 0.0003	Mn 0.2 2 0.01 0.0002	Fe 0.7 5 0.02 0.008	Co 1 4 0.02 0.0002	Ni 3 90 0.1 0.001	Cu 0.9 1 0.02 0.0005	Zn 0.6 0.5 0.001 0.003	Ga 10 60 0.5 0.006	Ge 20 200 — 0.002	As 7 200 0.2 0.003	Se 10 250 0.5 0.05	Br 0.02	Kr
	Rb 1 7 0.05 0.0003	Sr 0.2 2 0.1 0.0003	♀ 0.6 200 — 0.0003	Zr 2 1000 — 0.0006	Nb 5 2000 — 0.0008	Mo 3 20 0.02 0.002	Тс	Ru 10 60 1 0.001	Rh 20 4 0.0003	Pd 4 10 0.3 0.001	Ag 0.8 2 0.005 0.0007	Cd 0.5 0.4 0.003 0.0008	In 20 40 1 0.0003	Sn 9 30 0.2 0.0009	Sb 9 40 0.1 0.001	Te 4 30 0.1 0.02	I 	Хе
	Cs 40 000 4 0.2 0.0003	Ba 0.6 10 0.04 0.0003	La 1 2000 — 0.0003	Hf 4 2000 — 0.0008	Ta 10 2000 — 0.0005	W 8 1000 — 0.002	Re 3 600 0.0007	Os 0.2 100 0.002	lr 7 400 0.0004	Pt 7 100 0.2 0.001	Au 2 10 0.1 0.0009	Hg 7 150 2 0.0009	TI 10 20 0.1 0.0004	Pb 10 10 0.05 0.0006	Bi 7 40 0.1 0.0005	Ро	At	Rn
-																		
	2 	Pr 9 6000	Nd 10 1000 —	Pm	Sm 10 1000 —	Eu 0.9 20 0.5	Gd 5 2000	Tb 6 500 0,1	Dy 2 30 1	Ho 2 40	Er 0.7 30 2	Tm 2 900 —	Yb 0.3 4	Lu 0.3 300				
	0.0003	0.0002	0.001	Nin	0.001	0.0004	0.001	0.0002	0.0009	0.0002	0.0007	0.0002	0.001	0.0002				
	Th 7 —	Ра	0 60 40 000 —	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr				
	0.0003		0.0005]			

Requires N_2O/C_2H_2 flame and is therefore better analyzed by inductively coupled plasma

Best analyzed by emission