Phase equilibria of pure substances

Atkins, Chapter 5

Phase transition: phase change without change in chemical composition

(e.g., ice melting, evaporation + fog formation)

Molar Gibbs energy:
$$G_m = \frac{G}{n}$$
 extensive

Phase 1: water vapor

Phase 2: water liquid

A substance has a spontaneous tendency to change into the phase of lowest molar Gibbs energy

Chem 26

To occur spontaneously:

$$\Delta G = nG_m(2) - nG_m(1) = n\{G_m(2) - G_m(1)\} < 0$$

The Gibbs energy "under pressure"

$$dG = Vdp - SdT$$

From $G = H - TS \Rightarrow dG = dH - TdS - SdT$ and dH = dU + pdV + Vdp and dU = dw + dqand reversible change: dq = TdS and dw = -pdV

With increasing pressure energy increases (dG > 0)

Pressure, p

The Gibbs energy of gases under pressure

$$\Delta G_m = G_m(p_f) - G_m(p_i) = \int_{p_i}^{p_f} V_m dp$$

 $G_m(p_j)$

As V_m gets smaller (@ higher p), G_m becomes less responsive to pressure

Pressure, p_i/p_j

The Gibbs energy "under fire"

$$dG_{m} = V_{m}dp - S_{m}dT$$

$$= -S_{m}dT$$
@ constant p

Since the molar entropy is always positive, an increase in temperature (dT > 0) always leads to a decrease in G_m ($dG_m < 0$)

Luckily, there is more than thermodynamics in life

Spontaneity (determined by ΔG) is a tendency, not necessarily an actuality

Nils Walter: Chen

Phase diagrams

= maps showing p, T conditions at which the various phases of a substance are stable

