Electrochemical cells

If two different electrolytes are used:

Electrode compartments

Galvanic cell: electrochemical cell in which electricity is produced as a result of a spontaneous reaction (e.g., batteries, fuel cells, electric fish!)

Electrolytic cell: electrochemical cell in which a non-spontaneous reaction is driven by an external source of current

Reactions at electrodes: Half-reactions

Redox reactions: Reactions in which electrons are transferred from one species to another

E.g.,
$$CuS(s) + O_2(g) \rightarrow Cu(s) + SO_2(g)$$
reduced oxidized

Any redox reactions can be expressed as the difference between two reduction half-reactions in which e⁻ are taken up

Reduction of Cu^{2+} : $Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$

Reduction of Zn^{2+} : $Zn^{2+}(aq) + 2e^{-} \rightarrow Zn(s)$

Difference: $Cu^{2+}(aq) + Zn(s) \rightarrow Cu(s) + Zn^{2+}(aq)$

More complex: $MnO_4^-(aq) + 8H^+ + 5e^- \rightarrow Mn^{2+}(aq) + 4H_2O(l)$

Half-reactions are only a formal way of writing a redox reaction

Carrying the concept further

Reduction of Cu^{2+} : $Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$

In general: redox couple Ox/Red, half-reaction Ox + $ve^- \rightarrow Red$

Any reaction can be expressed in redox half-reactions:

$$2 H^{+}(aq) + 2e^{-} \rightarrow H_{2}(g, p_{f})$$

$$2 H^{+}(aq) + 2e^{-} \rightarrow H_{2}(g, p_{i})$$

Expansion of gas: $H_2(g, p_i) \rightarrow H_2(g, p_f)$

$$-AgCl(s) + e^{-} \rightarrow Ag(s) + Cl^{-}(aq)$$

$$Ag^{+}(aq) + e^{-} \rightarrow Ag(s)$$

 $Ag^+(aq) + e^- \to Ag(s)$ Dissolution of a sparingly soluble salt: $AgCl(s) \to Ag^+(aq) + Cl^-(aq)$

Reaction quotients:
$$Q = a_{Cl^-} \approx [Cl^-]$$
 $Q = \frac{1}{a_{Ag^+}} \approx \frac{1}{[Ag^+]}$

Reactions at electrodes

Galvanic cell:

Electrons Ions Ions Anode Cathode Oxidation Reduction $Red_1 \rightarrow Ox_2 + ve^ Ox_1 + ve^- \rightarrow Red_2$

Half-reactions

Electrolytic cell:

Types of electrodes I

Gas electrode:

solution metal $(e.g., H^+)$ (e.g., Pt)

 $Pt(s)|H_2(g)|H^+(aq)$

$$2H^{+} + 2e^{-} \rightleftharpoons H_{2}(g) Q = \frac{p(H_{2})}{a_{H^{+}}^{2}} \qquad AgCl(s) + e^{-} \rightleftharpoons Ag(s) + Cl^{-}(aq)$$

Insoluble-salt electrode:

solution metal (e.g., Cl⁻) (e.g., Ag)

Ag(s)|AgCl(s)|Cl(aq) $Q=a_{Cl}$

Types of electrodes and how to put them together in a galvanic cell

Redox electrode:

 $|Pt(s)||Fe^{2+}(aq),Fe^{3+}(aq)|$

$$Fe^{3+} + e^{-} \longrightarrow Fe^{2+}$$

$$Q = \frac{a_{\text{Re}\,d}}{a_{Ox}} = \frac{a_{Fe^{2+}}}{a_{Fe^{3+}}}$$

Daniell cell:

 $\mathbf{Zn}(\mathbf{s}) | \mathbf{ZnSO}_4(\mathbf{aq}) | | \mathbf{CuSO}_4(\mathbf{aq}) | \mathbf{Cu}(\mathbf{s})$

$$Cu^{2+}(aq) + Zn(s) \rightleftharpoons Cu(s) + Zn^{2+}(aq)$$

$$Q = \frac{a_{Zn^{2+}}}{a_{Cu^{2+}}}$$

Cell reaction and potential

Cathode (Right): $Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$

Anode (Left): $Zn^{2+}(aq) + 2e^{-} \rightarrow Zn(s)$

this way the reaction becomes spontaneous

Overall (R-L): $Cu^{2+}(aq) + Zn(s) \rightleftharpoons Cu(s) + Zn^{2+}(aq) \blacktriangleright e^- disappear$

Cell reaction: Difference of electrode half-reactions (Reduction at Cathode - Oxidation at Anode)

