Differential and integrated rate laws

Consider A → B: a) 0th Order

\[- \frac{d[A]}{dt} = k\]

Differential rate law

\[d[A] = -k \, dt \quad \Rightarrow \quad \int d[A] = -k \int_0^t dt \]

\[[A](t) = [A]_0 - kt\]

Integrated rate law

b) 1st Order

\[- \frac{d[A]}{dt} = k[A]\]

Differential rate law

\[\int \frac{d[A]}{[A]} = -k \int_0^t dt \quad \Rightarrow \quad [A](t) = [A]_0 e^{-kt}\]

Integrated rate law

\[\ln[A](t) - \ln[A]_0 = \ln\left(\frac{[A](t)}{[A]_0}\right) = -kt\]
Differential and integrated rate laws of a second order reaction

c) 2nd Order

\[-\frac{d[A]}{dt} = k[A]^2\]

Differential rate law

\[
\int_0^t \frac{d[A]}{[A]_0} = -k \int_0^t dt
\]

Integrated rate law

\[
\frac{1}{[A](t)} = k t + \frac{1}{[A]_0}
\]

\[
[A](t) = \frac{[A]_0}{1 + k t [A]_0}
\]
The half-life of a reaction

Half-Life of a Reaction:
The time required for $[A]$ to drop by a factor of two

0^{th} Order: $[A](t) = -kt + [A]_0$
$[A]_0/2 = -kt_{1/2} + [A]_0$

$kt_{1/2} = [A]_0 - [A]_0/2$
$\Rightarrow t_{1/2} = \frac{[A]_0}{2k}$

1^{st} Order: $[A](t) = [A]_0 e^{-kt}$
$[A]_0/2 = [A]_0 e^{-kt_{1/2}}$

$e^{-kt_{1/2}} = 1/2$
$\Rightarrow t_{1/2} = \frac{\ln2}{k}$

Independent of $[A]_0$!

2^{nd} Order: $\frac{1}{[A](t)} = kt + \frac{1}{[A]_0}$
$\frac{2}{[A]_0} = kt_{1/2} + \frac{1}{[A]_0}$
$kt_{1/2} = \frac{2}{[A]_0} - \frac{1}{[A]_0}$
$\Rightarrow t_{1/2} = \frac{1}{k[A]_0}$
Summary of rate laws

Differential Rate Law

0^{th} Order:
\[
- \frac{d[A]}{dt} = k
\]

1^{st} Order:
\[
- \frac{d[A]}{dt} = k[A]
\]

2^{nd} Order:
\[
- \frac{d[A]}{dt} = k[A]^2
\]

Integral Rate Law

0^{th} Order:
\[
[A](t) = [A]_0 - kt
\]

1^{st} Order:
\[
[A](t) = [A]_0 e^{-kt}
\]

2^{nd} Order:
\[
\frac{1}{[A](t)} = kt + \frac{1}{[A]_0}
\]

Half-Life

0^{th} Order:
\[
t_{\frac{1}{2}} = \frac{[A]_0}{2k}
\]

1^{st} Order:
\[
t_{\frac{1}{2}} = \frac{\ln2}{k}
\]

2^{nd} Order:
\[
t_{\frac{1}{2}} = \frac{1}{k[A]_0}
\]
Tricks to determine rate laws

Consider \(A \rightarrow B \):

- **0th Order:**
 \[
 [A](t) = -kt + [A]_0
 \]

- **1st Order:**
 \[
 \ln[A](t) = -kt + \ln[A]_0
 \]

- **2nd Order:**
 \[
 \frac{1}{[A](t)} = kt + \frac{1}{[A]_0}
 \]

Consider \(A + B \rightarrow C \):

- **2nd Order:**
 \[
 -\frac{d[A]}{dt} = k[A][B]
 \]

BUT by:

- a) choosing \([A]_0 = [B]_0\)
 \[
 \Rightarrow [A] = [B]!
 \]

- b) choosing \([A]_0 \ll [B]_0\)
 \[
 \Rightarrow [B] \approx \text{constant}!
 \]

\[
-\frac{d[A]}{dt} = k'[A]; \quad k' = k[B]_0
\]
Sample Problem:

Consider: \(\text{CH}_3\text{CH}_2\text{NO}_2 + \text{OH}^- \rightarrow \text{CH}_3\text{CHNO}_2^- + \text{H}_2\text{O} \)

Initially \([\text{CH}_3\text{CH}_2\text{NO}_2] = [\text{OH}^-] = 5.00 \times 10^{-3} \text{ M} \). The concentration of hydroxide was then measured by monitoring the pH with the following result.

What is the order of the reaction? What is \(k \)?

<table>
<thead>
<tr>
<th>(t) (min)</th>
<th>0</th>
<th>5</th>
<th>10</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>([\text{OH}^-]) (M)</td>
<td>5.00 \times 10^{-3}</td>
<td>2.6 \times 10^{-3}</td>
<td>1.7 \times 10^{-3}</td>
<td>1.3 \times 10^{-3}</td>
</tr>
<tr>
<td>([\text{OH}^-]^{-1})</td>
<td>200</td>
<td>385</td>
<td>588</td>
<td>769</td>
</tr>
</tbody>
</table>

The most reasonable initial guess for this reaction is:

\[
-\frac{d[\text{OH}^-]}{dt} = k [\text{OH}^-][\text{CH}_3\text{CH}_2\text{NO}_2] = k [\text{OH}^-]^2
\]

Good line (\(r = 0.9998 \)) \(\Rightarrow \) correct rate law

slope = \(k = 0.637 \text{ M}^{-1} \text{ s}^{-1} \)

\[
\frac{1}{[\text{OH}^-]} = kt + \frac{1}{[\text{OH}^-]_0}
\]