1. Write the expression for the solubility product constant of $\mathrm{Al}(\mathrm{OH})_{3}$
a) in terms of molarities

$$
\mathbf{K}_{\text {sp }}=\left[\mathbf{A l}^{3+}\right]\left[\mathrm{OH}^{-}\right]^{3}
$$

b) in terms of solubility

$$
\mathbf{K}_{\mathrm{sp}}=\mathbf{s}(3 \mathrm{~s})^{3}=27 \mathrm{~s}^{4}
$$

2. Solubility of $\mathrm{Al}(\mathrm{OH})_{3}$ in pure water is \qquad greater / \qquad lower than the solubility in NaOH solution.
3. An electrochemical cell in which a non-spontaneous reaction is driven by an external source of direct current is called electrolytic cell
4. The oxidation number of Cr in $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ is +6
5. In the reaction $\mathrm{CuO}(\mathrm{s})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{Cu}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ the reducing agent is \mathbf{H}_{2}
6. Write denotation of gas chlorine electrode

Pt : $\mathrm{Cl}_{2}(\mathrm{~g}): \mathrm{Cl}^{-}(\mathrm{aq})$
7. In the expression for standard cell potential \vee represents number of moles of electrons
8. In order to measure the standard potential of electrode one sets up the cell in which the standard electrode is an anode and the electrode of interest is a cathode
II. Problems

1. At $633{ }^{\circ} \mathrm{C}$ the equilibrium constant K_{c} for the dissociation of ammonia to its elements is 6.56×10^{-3}.

$$
2 \mathrm{NH}_{3}(\mathrm{~g})==\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})
$$

a) calculate K_{p}
$K_{p}=36.21$
b) ammonia is placed in a 2 L flask where it generates 456 mm Hg of pressure. When equilibrium has been established, what is the total pressure in the flask?

$$
\mathrm{p}_{\mathrm{tot}}=1.14 \mathrm{~atm}
$$

2. K_{c} at 2000 K for the formation of $\mathrm{NO}(\mathrm{g})$ is 4×10^{-4}.

$$
\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})==2 \mathrm{NO}(\mathrm{~g})
$$

a) If analysis shows that the concentrations of N_{2} and O_{2} are both 0.25 M and that of NO is 0.0042 M , is the system at equilibrium?

NO

b) If the system is not at equilibrium, in which direction does the reaction proceed?

$$
\text { Rxn goes } \rightarrow
$$

c) When the system is at equilibrium, what are the equilibrium concentrations?

$$
\left[\mathrm{N}_{2}\right]=\left[\mathrm{O}_{2}\right]=0.2496 \quad[\mathrm{NO}]=0.005
$$

2. The solubility product constant for AgIO_{3} is 1.0×10^{-8}. If 0.10 g of solid AgIO_{3} is added to 100 mL of $0.0 .20 \mathrm{M} \mathrm{KIO}_{3}$, what are the concentrations $\mathrm{K}^{+}, \mathrm{IO}_{3}^{-}$, and Ag^{+}at equilibrium?

$$
\left[\mathrm{K}^{+}\right]=4.673 \times 10^{-3} \mathrm{M} \quad\left[\mathrm{Ag}^{+}\right]=2.14 \times 10^{-6} \mathrm{M} \quad\left[\mathrm{IO}_{3}^{-}\right]=4.675 \times 10^{-3} \mathrm{M}
$$

4. Balance the following unbalanced equation:

$$
3 \mathrm{Cu}(\mathrm{~s})+2 \mathrm{NO}_{3}^{-}(\mathrm{aq})+8 \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})-->3 \mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{NO}(\mathrm{~g})+12 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

5. Consider the following half-reactions:
$\mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{e}-->2 \mathrm{Cl}^{-}(\mathrm{aq}) \quad \mathrm{E}^{\mathrm{o}}=+1.36 \mathrm{~V}$
$\mathrm{I}_{2}(\mathrm{~s})+2 \mathrm{e}$--> $2 \mathrm{I}^{-}(\mathrm{aq}) \quad \mathrm{E}^{0}=+0.535 \mathrm{~V}$
$\mathrm{Pb}^{2+}(\mathrm{aq})+2 \mathrm{e}-->\mathrm{Pb}(\mathrm{s}) \quad \mathrm{E}^{\mathrm{o}}=-0.126 \mathrm{~V}$
$\mathrm{V}^{2+}(\mathrm{aq})+2 \mathrm{e}-->\mathrm{V}(\mathrm{s}) \quad \mathrm{E}^{0}=-1.18 \mathrm{~V}$
a) which is the weakest oxidizing agent on the list? $\quad \mathbf{V}^{2+}$
b) Which is the strongest reducing agent? $\quad \mathrm{V}(\mathrm{s})$
c) Will $\mathrm{Pb}(\mathrm{s})$ reduce $\mathrm{V}^{2+}(\mathrm{aq})$ to $\mathrm{V}(\mathrm{s})$? NO
d) Will $\mathrm{I}_{2}(\mathrm{~s})$ oxidize $\mathrm{Cl}^{-}(\mathrm{aq})$ to $\mathrm{Cl}_{2}(\mathrm{~g})$? ?
e) Name the elementsor ions that can be reduced by $\mathrm{Pb}(\mathrm{s}) \mathrm{Cl}_{2}(\mathrm{~g})$ and $\mathbf{I}_{2}(\mathrm{~s})$
6. Write the cell reaction and electrode half-reactions for the following cell:

$$
\operatorname{Pt}(\mathrm{s})\left|\mathrm{Cl}_{2}(\mathrm{~g})\right| \mathrm{HCl}(\mathrm{aq}) \| \mathrm{K}_{2} \mathrm{CrO}_{4}(\mathrm{aq})\left|\mathrm{Ag}_{2} \mathrm{CrO}_{4}(\mathrm{~s})\right| \mathrm{Ag}(\mathrm{~s})
$$

$$
2 \mathrm{Cl}^{-}(\mathrm{aq})+2 \mathrm{Ag}^{+}(\mathrm{aq}) \rightarrow \mathrm{Cl}_{2}(\mathrm{~g})+\mathrm{Ag}(\mathrm{~s})
$$

7. Use the standard potentials of the couples $\mathrm{Au}^{+} / \mathrm{Au}(+1.69 \mathrm{~V}), \mathrm{Au}^{3+} / \mathrm{Au}(+1.40 \mathrm{~V})$, and $\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}(+0.77 \mathrm{~V})$ to calculate E^{0} and the equilibrium constant for the reaction:

$$
\begin{aligned}
& 2 \mathrm{Fe}^{2+}(\mathrm{aq})+\mathrm{Au}^{3+}(\mathrm{aq})==2 \mathrm{Fe}^{3+}(\mathrm{aq})+\mathrm{Au}^{+}(\mathrm{aq}) \\
& \mathbf{E}_{\text {cell }}^{\mathbf{o}}=\mathbf{0 . 4 9} \mathbf{V} \quad \mathbf{K}=3.8 \times \mathbf{1 0}^{16}
\end{aligned}
$$

