1. Write the expression for the solubility product constant of $Al(OH)_3$ a) in terms of molarities

$K_{sp} = [Al^{3+}][OH^{-}]^{3}$

b) in terms of solubility

$$K_{sp} = s (3s)^3 = 27s^4$$

- 2. Solubility of Al(OH)₃ in pure water is _____greater /____lower than the solubility in NaOH solution.
- 3. An electrochemical cell in which a non-spontaneous reaction is driven by an external source of direct current is called electrolytic cell
- **4.** The oxidation number of Cr in $K_2Cr_2O_7$ is +6
- 5. In the reaction $CuO(s) + H_2(g) \rightarrow Cu(s) + H_2O(g)$ the reducing agent is H_2
- 6. Write denotation of gas chlorine electrode

$Pt \vdash Cl_2(g) \vdash Cl'(aq)$

- 7. In the expression for standard cell potential v represents number of moles of electrons
- 8. In order to measure the standard potential of electrode one sets up the cell in which the standard electrode is **an anode** and the electrode of interest is **a cathode**

II. Problems

1. At 633 $^o\!C$ the equilibrium constant K_c for the dissociation of ammonia to its elements is 6.56 x 10^{-3} .

 $2 \text{ NH}_3(g) == N_2(g) + 3 \text{ H}_2(g)$

a) calculate K_p

 $K_p = 36.21$

b) ammonia is placed in a 2 L flask where it generates 456 mm Hg of pressure. When equilibrium has been established, what is the total pressure in the flask?

p_{tot} = 1.14 atm

2. K_c at 2000 K for the formation of NO(g) is 4 x 10⁻⁴. N₂(g) + O₂(g) == 2NO(g) a) If analysis shows that the concentrations of N_2 and O_2 are both 0.25 M and that of NO is 0.0042 M, is the system at equilibrium?

NO

b) If the system is not at equilibrium, in which direction does the reaction proceed?

Rxn goes \rightarrow

c) When the system is at equilibrium, what are the equilibrium concentrations?

 $[N_2] = [O_2] = 0.2496$ [NO] = 0.005

2. The solubility product constant for $AgIO_3$ is 1.0×10^{-8} . If 0.10 g of solid $AgIO_3$ is added to 100 mL of 0.0.20 M KIO₃, what are the concentrations K⁺, IO_3^- , and Ag^+ at equilibrium?

 $[K^+] = 4.673 \times 10^{-3} M$ $[Ag^+] = 2.14 \times 10^{-6} M$ $[IO_3^-] = 4.675 \times 10^{-3} M$

NO

NO

4. Balance the following unbalanced equation: $3Cu(s) + 2NO_3(aq) + 8H_3O(aq) -> 3Cu^{2+}(aq) + 2NO(g) + 12H_2O(l)$

5. Consider the following half-reactions:

$Cl_2(g) + 2e> 2Cl(aq)$	$E^{o} = +1.36 V$
$I_2(s) + 2e> 2I(aq)$	$E^{o} = +0.535 V$
$Pb^{2+}(aq) + 2e> Pb(s)$	$E^{o} = -0.126 V$
$V^{2+}(aq) + 2e> V(s)$	$E^{o} = -1.18 V$

- a) which is the weakest oxidizing agent on the list? V^{2+}
- b) Which is the strongest reducing agent? V(s)
- c) Will Pb(s) reduce $V^{2+}(aq)$ to V(s)?
- d) Will $I_2(s)$ oxidize $Cl^{-}(aq)$ to $Cl_2(g)$?
- e) Name the elements or ions that can be reduced by Pb(s) $Cl_2(g)$ and $I_2(s)$

6. Write the cell reaction and electrode half-reactions for the following cell:

 $Pt(s) \mid Cl_2(g) \mid HCl(aq) \mid K_2CrO_4(aq) \mid Ag_2CrO_4(s) \mid Ag(s)$

 $2C\Gamma(aq) + 2Ag^{+}(aq) \rightarrow Cl_{2}(g) + Ag(s)$

7. Use the standard potentials of the couples Au^+/Au (+1.69 V), Au^{3+}/Au (+1.40 V), and Fe^{3+}/Fe^{2+} (+0.77 V) to calculate E^o and the equilibrium constant for the reaction:

$$2Fe^{2+}(aq) + Au^{3+}(aq) = 2Fe^{3+}(aq) + Au^{+}(aq)$$

 $E^{o}_{cell} = 0.49 V$ $K = 3.8 \times 10^{16}$