
Chapter 6

ANGULAR MOMENTUM

Particle in a Ring
Consider a variant of the one-dimensional particle in a box problem in which
the x-axis is bent into a ring of radius R. We can write the same Schrödinger
equation

− h̄2

2m

d2ψ(x)
dx2 = Eψ(x) (1)

There are no boundary conditions in this case since the x-axis closes upon
itself. A more appropriate independent variable for this problem is the
angular position on the ring given by, φ = x/R. The Schrödinger equation
would then read

− h̄2

2mR2

d2ψ(φ)
dφ2 = Eψ(φ) (2)

The kinetic energy of a body rotating in the xy-plane can be expressed as

E =
L2

z

2I
(3)

where I = mR2 is the moment of inertia and Lz , the z-component of angular
momentum. (Since L = r×p, if r and p lie in the xy-plane, L points in the
z-direction.) The structure of Eq (2) suggests that this angular-momentum
operator is given by

L̂z = −ih̄
∂

∂φ
(4)

This result will follow from a more general derivation in the following Sec-
tion. The Schrödinger equation (2) can now be written more compactly
as

ψ′′(φ) + m2ψ(φ) = 0 (5)

where
m2 ≡ 2IE/h̄2 (6)

(Please do not confuse this variable m with the mass of the particle!) Pos-
sible solutions to (5) are

ψ(φ) = const e±imφ (7)
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In order for this wavefunction to be physically acceptable, it must be single-
valued. Since φ increased by any multiple of 2π represents the same point
on the ring, we must have

ψ(φ + 2π) = ψ(φ) (8)

and therefore
eim(φ+2π) = eimφ (9)

This requires that
e2πim = 1 (10)

which is true only is m is an integer:

m = 0, ±1, ±2 . . . (11)

Using (6), this gives the quantized energy values

Em =
h̄2

2I
m2 (12)

In contrast to the particle in a box, the eigenfunctions corresponding to +m
and −m [cf. Eq (7)] are linearly independent, so both must be accepted.
Therefore all eigenvalues, except E0, are two-fold (or doubly) degenerate.
The eigenfunctions can all be written in the form const eimφ, with m al-
lowed to take either positive and negative values (or 0), as in Eq (10). The
normalized eigenfunctions are

ψm(φ) =
1√
2π

eimφ (13)

and can be verified to satisfy the normalization condition containing the
complex conjugate ∫ 2π

0
ψ∗

m(φ) ψm(φ) dφ = 1 (14)

where we have noted that ψ∗
m(φ) = (2π)−1/2 e−imφ. The mutual orthogo-

nality of the functions (13) also follows easily, for
∫ 2π

0
ψ∗

m′ ψm(φ) dφ =
1
2π

∫ 2π

0
ei(m−m′)φ dφ

=
1
2π

∫ 2π

0
[cos(m − m′)φ + i sin(m − m′)φ] dφ = 0

for m′ 6= m (14)
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The solutions (12) are also eigenfunctions of the angular momentum
operator (4), with

L̂zψm(φ) = mh̄ ψm(φ), m = 0, ±1, ±2 . . . (16)

This is a instance of a fundamental result in quantum mechanics, that any
measured component of orbital angular momentum is restricted to integral
multiples of h̄. The Bohr theory of the hydrogen atom, to be discussed in
the next Chapter, can be derived from this principle alone.

Free Electron Model for Aromatic Molecules

The benzene molecule consists of a ring of six carbon atoms around which
six delocalized pi-electrons can circulate. A variant of the FEM for rings pre-
dicts the ground-state electron configuration which we can write as 1π2 2π4,
as shown here:

Figure 1. Free electron model
for benzene. Dotted arrow shows
the lowest-energy excitation.

The enhanced stability the benzene molecule can be attributed to the com-
plete shells of π-electron orbitals, analogous to the way that noble gas elec-
tron configurations achieve their stability. Naphthalene, apart from the
central C–C bond, can be modeled as a ring containing 10 electrons in the
next closed-shell configuration 1π2 2π4 3π4. These molecules fulfill Hückel’s
“4N+2 rule” for aromatic stability. The molecules cyclobutadiene (1π2 2π2)
and cyclooctatetraene (1π2 2π4 3π2), even though they consist of rings with
alternating single and double bonds, do not exhibit aromatic stability since
they contain partially-filled orbitals.

The longest wavelength absorption in the benzene spectrum can be
estimated according to this model as

hc

λ
= E2 − E1 =

h̄2

2mR2 (22 − 12)

The ring radius R can be approximated by the C–C distance in benzene,
1.39 Å. We predict λ ≈ 210 nm, whereas the experimental absorption has
λmax ≈ 268 nm.
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Spherical Polar Coordinates

The motion of a free particle on the surface of a sphere will involve com-
ponents of angular momentum in three-dimensional space. Spherical polar
coordinates provide the most convenient description for this and related
problems with spherical symmetry. The position of an arbitrary point r is
described by three coordinates r, θ, φ, as shown in Fig. 2.

Figure 2. Spherical
polar coordinates.

These are connected to cartesian coordinates by the relations

x = r sin θ cosφ

y = r sin θ sinφ

z = r cos θ (16)

The radial variable r represents the distance from r to the origin, or the
length of the vector r:

r =
√

x2 + y2 + z2 (18)

The coordinate θ is the angle between the vector r and the z-axis, similar
to latitude in geography, but with θ = 0 and θ = π corresponding to the
North and South Poles, respectively. The angle φ describes the rotation of
r about the z-axis, running from 0 to 2π, similar to geographic longitude.

The volume element in spherical polar coordinates is given by

dτ = r2 sin θ dr dθ dφ,

r ∈ {0, ∞} , θ ∈ {0, π} , φ ∈ {0, 2π} (19)

and represented graphically by the distorted cube in Fig. 3.
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Figure 3. Volume element in
spherical polar coordinates.

We also require the Laplacian operator

∇2 =
1
r2

∂

∂r
r2 ∂

∂r
+

1
r2 sin θ

∂

∂θ
sin θ

∂

∂θ
+

1
r2 sin2 θ

∂2

∂φ2 (20)

A detailed derivation is given in Supplement 6.

Rotation in Three Dimensions

A particle of mass M , free to move on the surface of a sphere of radius R,
can be located by the two angular variables θ, φ. The Schrödinger equation
therefore has the form

− h̄2

2M
∇2Y (θ, φ) = E Y (θ, φ) (21)

with the wavefunction conventionally written as Y (θ, φ). These functions
are known as spherical harmonics and have been used in applied mathemat-
ics long before quantum mechanics. Since r = R, a constant, the first term
in the Laplacian does not contribute. The Schrödinger equation reduces to

{
1

sin θ

∂

∂θ
sin θ

∂

∂θ
+

1
sin2 θ

∂2

∂φ2 + λ

}
Y (θ, φ) = 0 (22)

where

λ =
2MR2E

h̄2 =
2IE

h̄2 (23)
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again introducing the moment of inertia I = MR2. The variables θ and φ
can be separated in Eq (22) after multiplying through by sin2 θ. If we write

Y (θ, φ) = Θ(θ)Φ(φ) (24)

and follow the procedure used for the three-dimensional box, we find that
dependence on φ alone occurs in the term

Φ′′(φ)
Φ(φ)

= const (25)

This is identical in form to Eq (5), with the constant equal to −m2, and we
can write down the analogous solutions

Φm(φ) =

√
1
2π

eimφ, m = 0, ±1, ±2 . . . (26)

Substituting (24) into (22) and cancelling the functions Φ(φ), we obtain an
ordinary differential equation for Θ(θ)

{
1

sin θ

d

dθ
sin θ

d

dθ
− m2

sin2 θ
+ λ

}
Θ(θ) = 0 (27)

Consulting our friendly neighborhood mathematician, we learn that the
single-valued, finite solutions to (27) are known as associated Legendre func-
tions. The parameters λ and m are restricted to the values

λ = `(` + 1), ` = 0, 1, 2 . . . (28)

while
m = 0, ±1, ±2 . . . ± ` (2`+1values) (29)

Putting (28) into (23), the allowed energy levels for a particle on a sphere
are found to be

E` =
h̄2

2I
`(` + 1) (30)

Since the energy is independent of the second quantum number m, the levels
(30) are (2`+1)-fold degenerate.
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The spherical harmonics constitute an orthonormal set satisfying the
integral relations

∫ π

0

∫ 2π

0
Y ∗

`′m′(θ, φ)Y`m(θ, φ) sin θ dθ dφ = δ``′δmm′ (31)

The following table lists the spherical harmonics through ` = 2, which will
be sufficient for our purposes.

Spherical Harmonics Y`m(θ, φ)

Y00 =
(

1
4π

)1/2

Y10 =
(

3
4π

)1/2

cos θ

Y1±1 = ∓
(

3
4π

)1/2

sin θ e±iφ

Y20 =
(

5
16π

)1/2

(3 cos2 θ − 1)

Y2±1 = ∓
(

15
8π

)1/2

cos θ sin θ e±iφ

Y2±2 =
(

15
32π

)1/2

sin2 θ e±2iφ

A graphical representation of these functions is given in Fig. 4. Surfaces of
constant absolute value are drawn, positive where green and negative where
red. Other colors represent complex values.
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Figure 4. Contours of spherical harmonics.

Theory of Angular Momentum
Generalization of the energy-angular momentum relation (3) to three di-
mensions gives

E =
L2

2I
(32)

Thus from (21)-(23) we can identify the operator for the square of total
angular momentum

L̂2 = −h̄2
{

1
sin θ

∂

∂θ
sin θ

∂

∂θ
+

1
sin2 θ

∂2

∂φ2

}
(33)

By (28) and (29), the functions Y (θ, φ) are simultaneous eigenfunctions of
L̂2 and L̂z such that

L̂2Y`m(θ, φ) = `(` + 1) h̄2 Y`m(θ, φ)

and L̂zY`m(θ, φ) = mh̄ Y`m(θ, φ) (34)

But the Y`m(θ, φ) are not eigenfunctions of either Lx and Ly (unless ` = 0).
Note that the magnitude of the total angular momentum

√
`(` + 1)h̄ is
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greater than its maximum observable component in any direction, namely
`h̄. The quantum-mechanical behavior of the angular momentum and its
components can be represented by a vector model, illustrated in Fig. 5. The
angular momentum vector L, with magnitude

√
`(` + 1)h̄, can be pictured

as precessing about the z-axis, with its z-component Lz constant. The
components Lx and Ly fluctuate in the course of precession, corresponding
to the fact that the system is not in an eigenstate of either. There are 2`+1
different allowed values for Lz, with eigenvalues mh̄ (m = 0, ±1, ±2 . . . ±`)
equally spaced between +` h̄ and −` h̄.

=

=l=

= -

= -

= Figure 5. Vector model
for angular momentum,
showing the case ` = 2.

This discreteness in the allowed directions of the angular momentum vec-
tor is called space quantization. The existence of simultaneous eigenstates
of L̂2 and any one component, conventionally L̂z, is consistent with the
commutation relations derived in Chap. 4:

[L̂x, L̂y] = ih̄L̂z et cyc (4.43)

and
[L̂2, L̂z] = 0 (4.44)

Electron Spin

The electron, as well as certain other fundamental particles, possesses an
intrinsic angular momentum or spin, in addition to its orbital angular mo-
mentum. These two types of angular momentum are analogous to the daily
and annual motions, respectively, of the Earth around the Sun. To dis-
tinguish the spin angular momentum from the orbital, we designate the
quantum numbers as s and ms, in place of ` and m. For the electron, the
quantum number s always has the value 1

2 , while ms can have one of two
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values, ±1
2 . The electron is said to be an elementary particle of spin 1

2 .
The proton and neutron also have spin 1

2 and belong to the classification of
particles called fermions, which are govened by the Pauli exclusion princi-
ple. Other particles, including the photon, have integer values of spin and
are classified as bosons. These do not obey the Pauli principle, so that an
arbitrary number can occupy the same quantum state. A complete theory
of spin requires relativistic quantum mechanics. For our purposes, it is suf-
ficient to recognize the two possible internal states of the electron, which
can be called ‘spin up’ and ‘spin down.’ These are designated, respectively,
by α and β as factors in the electron wavefunction. Spins play an essential
role in determining the possible electronic states of atoms and molecules.
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