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reaction coordinate, but as a second dimension the dis-

tance between ions needs to be taken into account as

ions do not move independently through the pore.

The biasing potential in both equilibrium and

nonequilibrium methods can be chosen arbitrarily,

rendering the PMF approach suitable also for high

barriers that are precluded from direct flux estimates,

as the spontaneous permeation rate would be too low to

gain sufficient statistics on simulation timescales. In

addition, the driving force required in nonequilibrium

simulations in terms of, e.g., a concentration gradient

or an applied voltage would be unrealistically high.
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Definition

Force-fluorescence spectroscopy generally refers to

the combination of single-molecule manipulation tech-

nique with simultaneous single-molecule fluorescence

measurement to characterize the mechanochemical

properties of a macromolecule.
F

Basic Characteristics

On the one hand, single-molecule manipulation using

scanning probe techniques, ▶ optical tweezers, and

▶magnetic tweezers enables mechanical perturbation

of a system at the single-molecule level. On the other

hand, intermediates in time-dependent reactions that

are otherwise difficult to study in conventional ensem-

ble experiments due to the averaging over many

molecules can now be observed and studied directly

using single-molecule fluorescence techniques. The
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combination of single-molecule manipulation tech-

niques with single-molecule fluorescence measure-

ments can thus find many potential applications in

biophysical research, for example, manipulation of a

macromolecule, while observing conformational tran-

sitions of the molecule in real time. ▶Optical twee-

zers, ▶magnetic tweezers, and ▶ atomic-force

microscopy have all been combined with fluorescence

microscopy for simultaneous manipulation and fluo-

rescence measurements at the single-molecule level.

One of the first studies of this kind was targeting

single myosin molecules and their interactions with

actin (Ishijima et al. 1998). A single actin filament

with beads attached to both ends was levitated in

solution using optical tweezers (Fig. 1a). The single

actin filament was brought into contact with a single

myosin molecule immobilized on the surface of

a coverslip. Binding of a single myosin molecule to

the actin filament in the presence of ATP triggers the

displacement of the actin filament, which was
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measured by▶ optical tweezers. Simultaneously, indi-

vidual ATPase reactions of the myosin motor were

monitored as the time course of binding and unbinding

of a Cy3-labeled ATP analogue using▶ total-internal-

reflection fluorescence (TIRF) microscopy. The

unique advantage of this experiment is that the tempo-

ral relationship between force generation and ATP

hydrolysis by the motor can be directly measured.

The authors found that force generation does not

always coincide with the release of bound nucleotide.

Instead, there is a frequent delay of several hundreds of

milliseconds after release of the bound nucleotide

before the displacement of the actin. However, it is

widely accepted that the force generation in myosin is

directly coupled to the release of ADP. These findings

contradict this view and suggest the presence of

a memory state in single molecules of myosin.

In a different setup combining ▶ optical tweezers

with▶TIRFmicroscopy (Lang et al. 2004), Lang et al.

applied mechanical force to a single DNA molecule

immobilized on a surface using optical tweezers,

while simultaneously measuring the dissociation of

a DNA strand marked by fluorescence labels. In this

experimental design (Fig. 1b), optical trapping and

single-molecule fluorescence coincide also in space.

The challenges arising from this design are the

photobleaching of fluorophores by the intense trapping

laser through multiphoton processes and the selective

detection of photons emitted by the single fluorophores

of interest. Careful choice of fluorophores and engi-

neering of the microscope, including alternating fluo-

rescence excitation and optical trapping, are necessary

to overcome these challenges (Lang et al. 2004). This

design will be useful for certain systems where it is

difficult to separate spatially the point of manipulation

from the point of fluorescence excitation and detection.

Confocal fluorescence imaging was also com-

bined with optical tweezers to study the effect of

subpiconewton forces on the conformational dynamics

of Holiday junctions (Hohng et al. 2007). The Holiday

junction is a crossover structure that can be formed by

two double-stranded DNA molecules. It is an impor-

tant intermediate in DNA homologous recombination.

In this experiment (Fig. 1c), individual Holiday junc-

tions were immobilized on a coverslip surface. One

arm of the Holiday junction was attached to a long

double-stranded DNA linker through complementary

base pairing. The other end of the linker was bound

to the surface of a bead held in solution by optical
tweezers, through which force can be exerted and

transmitted through the DNA linker to change the

conformation of the Holiday junction. Force and

single-molecule fluorescence were measured simulta-

neously but separated in space. The conformational

fluctuations of the Holiday junction under the influence

of the mechanical force were exquisitely monitored

through ▶ fluorescence resonance energy transfer

measurements. In addition, these results demonstrated

a lever-arm effect, where the response of the molecule

to mechanical force can be amplified with an increase

in the molecular “arm” length.

For certain types of optical tweezers, the optical

setup can be easily modified to incorporate epi-

fluorescence imaging with simultaneous ▶ optical

trapping (see this volume on ▶Optical Tweezers).

This principle was demonstrated by Wuite and

coworkers (van Mameren et al. 2009), and Chemla

and coworkers (Min et al. 2009). In one experiment,

the disassembly of Rad51 proteins from preformed

nucleoprotein filament held under tensionwasmeasured

(van Mameren et al. 2009). The disassembly of Rad51

protein from nucleoprotein filament is necessary for the

completion of eukaryotic homologous recombination

and was monitored using fluorescently labeled Rad51

in vitro. Van Mameren et al. found that this process can

slow down and even be stalled upon application of

tension to the filament. In a different experiment (Min

et al. 2009), epi-fluorescence was used to image

a fluorescently labeled single bacterium trapped by

optical tweezers. The authors measured bacterial flagel-

lar rotation using back focal plane interferometry, which

offers a temporal resolution greater than 100 Hz.

▶Atomic-force microscopy (AFM) and▶magnetic

tweezers were also combined with TIRF to measure

conformations of macromolecules in response to

mechanical force. In one study (Hugel et al. 2002),

a single azobenzene polymer was stretched between an

AFM cantilever and a flint glass surface. The polymer

conformation is sensitive to 365-nm light input due to

the presence of the azobenzene group. Excitation of the

azobenzene group by 365-nm light delivered through

TIRF (Fig. 1d) triggers the reversible cis-trans isomer-

ization and, in turn, changes the extension of the mole-

cule, which was monitored using AFM. This elegant

example demonstrated for the first time a single-

molecule device that is capable of optomechanical

energy conversion. In a second example (Kufer et al.

2008), AFM was used to pick up individual DNA
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oligonucleotide molecules from a surface for ordered

assembly of these molecules at a distant location. TIRF

was used to characterize the quality and efficiency of

this process. Also, magnetic tweezers have been com-

bined with TIRF to study the DNA packaging motor of

bacteriophage phi29 (Hugel et al. 2007).

All these hybrid techniques detect fluorescence

from single-photon excitation process. A majorities

of them has not been applied to live cells. One potential

future application of force-fluorescence spectroscopy

is to study single-molecule activity in the context

of a live cell, for example, manipulation of a single

receptor on the cell surface and measurement of

reporter gene expression to probe the mechanisms of

mechanotransduction. Compared to single-photon

excitation, two-photon excited (TPE) fluorescence

has the superior advantages of low background, intrin-

sic three-dimensional (3D) resolution, and reduced

overall phototoxicity for biological samples. There-

fore, TPE may be well suited for integration with

single-molecule manipulation for simultaneous fluo-

rescence detection with high sensitivity. This could

be very useful for systems that are typically studied

deep in solution or tissue, where evanescent field exci-

tation/TIRF is difficult. Custom-built microscopes that

combine angstrom resolution optical tweezers with

TPE fluorescence are just beginning to appear (Cheng

et al. 2010), in which a 830-nm trapping laser is used

for simultaneous TPE excitation and optical trapping.
The engineering aspects of force-fluorescence

microscope are more complex than a conventional

force-measuring technique because of the need to mea-

sure both force and fluorescence simultaneously. How-

ever, epi-fluorescence detection can always be

incorporated into an existing ▶ optical tweezers as

shown in Fig. 2. A potential drawback is the high

fluorescence background that may not allow detection

of fluorescence at a single-molecule level. Further

engineering designs, for example, incorporation of

TIRF excitation, confocal excitation, or TPE excitation

are necessary to guarantee fluorescence detection at

the single-molecule level. It is very likely that

depending on the system to be studied and the exper-

imental geometry required, different fluorescence

excitation schemes will offer different advantages.

For certain cases, force and fluorescence measure-

ments are desired to coincide in space. The design by

Block and coworkers will be suitable for this purpose,

with further developments possible. In other cases

where trapping and fluorescence detection can be sep-

arated in space, alternative schemes can be designed

and used (Hohng et al. 2007; Ishijima et al. 1998).

With the development of ▶ nanometer resolution

fluorescence detection (Yildiz et al. 2003) and

subnanometer measurement by ▶ optical tweezers,

force-fluorescence spectroscopy is anticipated to

reach higher resolution for both manipulation and

fluorescence detection, which offers a great tool for
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biophysicist to understand the fundamental mechano-

chemistry of macromolecules as well as mechanotrans-

ductions that occur in the cell.
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Synonyms

Optoacoustic spectroscopy; Photoacoustic spectros-

copy; Photothermal spectroscopy
Definition

▶ FTIR-PAS is a unique extension of IR spectroscopy

which combines the utility of interferometry with the

standard sample-gas microphone of the photothermal

technique for depth-profile analysis of materials.

FTIR-PAS is the most powerful spectroscopy-based

depth-profiling tool that enables nondestructive and

noncontact measurements with minimal sample prep-

aration need.

Although absorption spectrum is retrieved from

FTIR-PAS experiments, the thermal behavior of the

sample rather than the optical properties plays a major

role in the generation of PA signal.
Basic Characteristics

The evolution of photoacoustic spectroscopy (PAS)

began with the discovery of emission of sound from

a thin diaphragm exposed to modulated (mechanically

chopped) sunlight by Alexander Graham Bell in 1880.

However, the concept was impractical until the advent

of microphone in the 1930s. Similar effect could be

observed when infrared or ultraviolet light is used.

Unlike most spectroscopic techniques, PAS is not

based on the measurement of electromagnetic radia-

tion. Rather, PAS involves measurement of acoustic
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