R13.2 Internal-Age Distribution, I (α)

The relationship between the internal-age and external-age distribution can be demonstrated by analyzing a continuous reactor operating at steady state that is filled with material of volume V. Consider again that the volume of reactor is filled with maize-colored molecules, and at time $t=0$ we start to inject blue molecules to replace the maize molecules. By definition of $I(\alpha)$, the volume of molecules inside the reactor that have been there between a time α and $\alpha+$ $d \alpha$ is

$$
\begin{equation*}
d V=V[I(\alpha)] d \alpha \tag{R13.2-1}
\end{equation*}
$$

At $t=0$ we will let $\left(v_{0} d \alpha\right)$ be the first volume of blue molecules that enter the reactor. We want to consider what has happened to the molecules in this

Finding a relation between $E(\alpha)$ and volume at a time α after being injected. Some of the molecules will already have left the system at a time α, while others remain. The fraction of molecules that still remain in the system is $[1-F(\alpha)]$. Consequently, the volume of molecules that entered the system between $t=0$ and $t=d \alpha$ and are still in the system at a later time α is

$$
\begin{equation*}
d V=v_{0} d \alpha[1-F(\alpha)] \tag{R13.2-2}
\end{equation*}
$$

This is the volume of molecules that have an age between α and $(\alpha+d \alpha)$. Equating Equations (R13.2-1) and (R13.2-2) and dividing by V and by $d \alpha$ gives

$$
I(\alpha)=\frac{v}{V}[1-F(\alpha)]
$$

Then

$$
\begin{equation*}
I(\alpha)=\frac{1}{\tau}[1-F(\alpha)]=\frac{1}{\tau}\left[1-\int_{0}^{\alpha} E(\alpha) d \alpha\right] \tag{R13.2-3}
\end{equation*}
$$

Differentiating Equation (R13.2-3) and noting that

$$
\frac{d[1-F(\alpha)]}{d \alpha}=-E(\alpha)
$$

gives

$$
\begin{equation*}
E(\alpha)=-\frac{d}{d \alpha}[\tau I(\alpha)] \tag{R13.2-4}
\end{equation*}
$$

As a brief exercise, the internal-age distribution of a perfectly mixed CSTR will be calculated. Equation (13-27) gives the RTD of the reactor, which upon substitution into Equation (R13.2-3) gives

$$
\begin{align*}
I(\alpha) & =\frac{1}{\tau}\left(1-\int_{0}^{\alpha} \frac{1}{\tau} e^{-\alpha / \tau} d \alpha\right) \\
& =\frac{1}{\tau}\left(1+\left.e^{-\alpha / \tau}\right|_{0} ^{\alpha}\right) \\
& =\frac{1}{\tau} e^{-\alpha / \tau} \tag{R13.2-5}
\end{align*}
$$

True only for a perfectly mixed CSTR

Using $I(\alpha)$ and $a(\alpha)$ to find the mean catalyst activity

Thus the internal-age distribution of a perfectly mixed CSTR is identical to the exit-age distribution, or RTD, because the composition of the effluent is identical to the composition of the material anywhere within the CSTR when it is perfectly mixed.

Example R13.2-1 CSTR with Fresh Catalyst Feed

When a catalyst is decaying, fresh catalyst must be fed to a reactor to keep a constant level of activity. The relation between catalyst weight, conversion, and catalyst activity is

$$
W=\frac{F_{\mathrm{A} 0} X}{-r_{\mathrm{A}}^{\prime}}=\frac{F_{\mathrm{A} 0} X}{\bar{a} k_{0} C_{\mathrm{A}}^{n}}
$$

(RE13.2-1)
where \bar{a} is the mean activity in the reactor. Determine the mean activity for first-order decay in a CSTR.

Solution

Because there will be a distribution of times the various catalyst particles have spent in the reactor, there will be a distribution of activities. The mean activity is the integral of the product of the fraction of the particles that have been in the reactor (i.e., have ages) between time α and $\alpha+\Delta \alpha, I(\alpha) d \alpha$, and the activity at time α :

$$
\bar{a}=\int_{0}^{\infty} a(\alpha) I(\alpha) d \alpha
$$

(RE13.2-2)

For first-order decay,

$$
\begin{equation*}
a=e^{-k \alpha} \tag{RE13.2-3}
\end{equation*}
$$

In a well-mixed CSTR,

$$
\begin{align*}
I(\alpha) & =\frac{1}{\tau} e^{-\alpha / \tau} \tag{R13.2-5}\\
\bar{a} & =\int_{0}^{\infty} \frac{e^{-k_{d} \alpha} e^{-\alpha / \tau_{c}}}{\tau_{c}} d \alpha
\end{align*}
$$

(RE13.2-4)
where k_{d} is the decay constant and τ_{c} is the mean contact time, such that

$$
\begin{equation*}
\tau_{c}=\frac{W}{F_{c}}=\frac{\text { weight of catalyst }(\mathrm{kg})}{\text { feed rate of catalyst }(\mathrm{kg} / \mathrm{s})} \tag{RE13.2-5}
\end{equation*}
$$

Integrating yields

$$
\begin{equation*}
\bar{a}=\frac{1}{\tau_{c} k_{d}+1} \tag{RE13.2-6}
\end{equation*}
$$

We see that for a distribution of activities, each following first-order decay in an ideal CSTR, the form of the mean activity is identical to the integrated form for second-order catalyst decay. See Problem 13-2(a). What if the catalyst decay law in Example 13-6 were second order? Third order? What if the catalyst decay law followed that of West Texas crude in Example 10-7 with $t_{m}=10 \mathrm{~s}$? What generalizations can you make?

