Problems for Transition State Theory

- 1. List your approximations in developing the transition state theory (TST) and how seriously they will affect the estimate of the frequency factor. What are the limitations of TST?
- 2. We are going to analyze the reaction between atomic fluorine and molecular hydrogen

$$F + H_2 \rightarrow HF + H$$

The reaction is carried out at 300K.

- (1) Estimate the activation energy E (kJ/mol)
- (2) Estimate the frequency factor A (dm³/mol•s) using transition state theory (TST). Before calculating A make a table showing each of the partition functions for each species (e.g., $q_V!(H_2)!=!$, q_T (H₂)!=!, q_V (FHH)!=!___).
- (3) Compare and comment on the frequency factors calculated by these two methods.

Additional information

<u>Reactants</u>

H-H Distance 0.74 Angstroms (Ang) H-H Stretch 4395 cm⁻¹ F = 19 amu $H_2 = 2$ amu

Transition State

Linear molecule Distances

$$F \xrightarrow{1.6 \text{ Ang}} H \xrightarrow{0.76 \text{ Ang}} H$$

Vibrational Frequencies

FHH	Bending 397 cm ⁻¹
FHH	Bending 392 cm ⁻¹ (degenerate)
HH	Stretch 4007 cm ⁻¹

Hint: It may speed your calculations if you take ratios for all partition functions. For example the transitional partition function ratio

$$T = 300K$$

$$\frac{q_{FHH}}{(q_{H_2})_T (q_F)_T} = \frac{m^3 \left(\frac{m_{FHH}}{1 \text{ amu}}\right)^{3/2}}{9.89 \times 10^{29} \left(\frac{m_{H_2}}{1 \text{ amu}}\right)^{3/2} \left(\frac{m_F}{1 \text{ amu}}\right)^{3/2}}$$

Constants

k = Boltzmann's constant = $1.38!x!10^{-23}$ kg•m²/s/molecule/K h = Plank's constant = $6.62!x!10^{-34}$ kg•m²/s 1 amu = $1.66!x!10^{-24}$ g 1 kcal/mol corresponds to 350 cm⁻¹

Other information that may or many not be useful

$$\mathrm{H}_{2} + \mathrm{Br} \twoheadrightarrow \mathrm{HBr} + \mathrm{H}$$

$$E = 55.2 \frac{kJ}{mol}$$

Heats of Formation

HF	:	–272.55 kJ/mol
HCl	:	–92.31 kJ/mol
HBr	:	–36.44 kJ/mol
HI	:	26.36kJ/mol
Η	:	218 kJ/mol
F	:	79.39 kJ/mol
Br	:	111.9 kJ/mol
Ι	:	106.8 kJ/mol
F ₂	:	0 kJ/mol
H ₂	:	0 kJ/mol