Problems for Collision Theory

- 1. Discuss at least three assumptions or approximations used to the frequency factor with collision theory. What are the limitations of collision theory?
- 2. List your approximations in developing the transition state theory (TST) and how seriously they will affect the estimate of the frequency factor. What are the limitations of TST?
- 3. What are the limitations to the polyani equation?
- 4. Write a few sentences describing activation energy and methods one can use to estimate it.
- 5. We are going to analyze the reaction between atomic fluorine and molecular hydrogen

$$F + H_2 \rightarrow HF + H$$

The reaction is carried out at 300K.

(1) Estimate the frequency factor A $(dm^3/mol \cdot s)$ using collision theory.

Additional information <u>Reactants</u> H-H Distance 0.74 Angstroms (Ang) H-H Stretch 4395 cm⁻¹ H₂ Effective molecular diameter = 2.5 Angstroms F Effective atom diameter 1.7 = Angstroms F = 19 amu H₂ = 2 amu

<u>Transition State</u> Linear molecule Distances

$$F \xrightarrow{1.6 \text{ Ang}} H \xrightarrow{0.76 \text{ Ang}} H$$

Vibrational Frequencies

FHH	Bending 397 cm^{-1}
FHH	Bending 392 cm ^{-1} (degenerate)
HH	Stretch 4007 cm^{-1}

Constants

k = Boltzmann's constant = $1.38 \times 10^{-23} \text{ kg} \cdot \text{m}^2/\text{s/molecule/K}$ h = Plank's constant = $6.62 \times 10^{-34} \text{ kg} \cdot \text{m}^2/\text{s}$ 1 amu = $1.66 \times 10^{-24} \text{ g}$ 1 kcal/mol corresponds to 350 cm⁻¹

Other information that may or many not be useful

 $H_2 + Br \rightarrow HBr + H$

 $E = 55.2 \frac{kJ}{mol}$

Heats of Formation

TTE		272.5511/1
HF	:	-2/2.55 kJ/mol
HCl	:	–92.31 kJ/mol
HBr	:	-36.44 kJ/mol
HI	:	26.36kJ/mol
Н	:	218 kJ/mol
F	:	79.39 kJ/mol
Br	:	111.9 kJ/mol
Ι	:	106.8 kJ/mol
F_2	:	0 kJ/mol
${\rm H}_2$:	0 kJ/mol