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TAME synthesis problem 
Tert-Amyl Methyl Ether (TAME) is an oxygenated additive for green gasolines. Besides its use as an 

octane enhancer, it also improves the combustion of gasoline and reduces the CO and HC (and, in a 

smaller extent, the NOx) automobile exhaust emissions. Due to the environmental concerns related to 

those emissions, this and other ethers (MTBE, ETBE, TAEE) have been lately studied intensively. 

TAME is currently catalytically produced in the liquid phase by the reaction of methanol (MeOH) and 

the isoamylenes 2-methyl-1-butene (2M1B) and 2-methyl-2-butene (2M2B). There are three 

simultaneous equilibrium reactions in the formation and splitting of TAME: the two etherification 

reactions and the isomerization between the isoamylenes: 

 

TAMEMeOHBM ⇔+12         (1) 

TAMEMeOHBM ⇔+22         (2) 

BMBM 2212 ⇔         (3) 

 

These reactions are to be carried out in a plug flow reactor and a membrane reactor in which MeOH is 

fed uniformly through the sides. 

 

For isothermal operation: 

a) Plot the concentration profiles for a 10 m3 PFR. 

b) Vary the entering temperature, T0, and plot the exit concentrations as a function of T0. 

For a reactor with heat exchange (U = 10 J.m-2.s-1.K-1): 

c) Plot the temperature and concentration profiles for an entering temperature of 353 K 

d) Repeat (a) through (c) for a membrane reactor. 

 

NOTE: To simplify the problem, consider the solution density and heat capacity constant (evaluate 

them for the entering temperature and the feed mole fractions) and consider the solution as ideal: ai = xi 

in the rate expressions. 

 

A new and improved kinetic model, including the non-ideal character of the reacting solution, can be 

found in “Number of Actives Sites in TAME Synthesis: Mechanism and Kinetic Modeling”, Manuela 

V. Ferreira and José M. Loureiro, Ind. Eng. Chem. Res. 43 (2004) 5156-5165. 
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Additional information for solving the problem 

• Thermodynamic equilibrium constants, activity based (Vilarinho Ferreira and Loureiro, 2001) 
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with: T in Kelvin 

 

• Kinetic constants for the direct reactions (Kiviranta-Pääkkönen et al., 1998) 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ×
−×=

TR
k

3
10

1
108.76exp102870.3         (I.4) 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ×
−×=

TR
k

3
13

2
107.99exp109682.3        (I.5) 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ×
−×=

TR
k

3
10

3
107.81exp104767.7        (I.6) 

with: k in mol. 1−
catkg .s-1 

  T in Kelvin 

  R = 8.314 J.mol-1.K-1 

 

• Adsorption constants for each component, activity based (calculated and adapted from Oktar et 

al., 1999) 
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• Heat of reaction (Vilarinho Ferreira and Loureiro, 2001) 
RH1∆  = - 41.708 kJ.mol-1 
RH 2∆  = - 30.981 kJ.mol-1 
RH 3∆  = - 10.727 kJ.mol-1 

 

• Bulk density and bed porosity 

The PFR is filled with a macroreticular strong cation ion-exchange resin in hydrogen form 

(Amberlyst 15 Wet, Rohm & Haas).  

The bulk density is: Lgb /770=ρ  

The bed porosity is: ε = 0.4 

 

• Rate equations for the formation of each component (Vilarinho Ferreira and Loureiro, 2001) 
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BBM rrr 21 +=             (I.13) 

MT rr −=             (I.14) 

 

with: r in mol. 1−
catkg .s-1 

ai stands for the activity of component i in the liquid phase, and since we are considering the 

solution as ideal: 

   ii xa =          (I.15) 

where xi is the mole fraction of component i in the liquid phase. 

 

We can also define the rate of each reaction: 
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• Heat capacity of each component 
32 TdTcTbaCp iiiii +++=         (I.19) 

with: Cp in kJ.mol-1.K-1 

 T in Kelvin 

  

component i 10 ai 104 bi 107 ci 1010 di 

MeOHa 0.077 1.62 2.06 2.87 

2M1Bb 1.27 -0.609 5.08 1.69 

2M2Bb 1.33 -1.48 7.51 -0.882 

TAMEc 1.73 2.29 -6.00 20.0 
 

aZhang and Datta, 1995; bKitchaiya and Datta, 1995; cEstimated by the Missenard  

method (Reid et al., 1987) 

 

To simplify the problem we are going to consider the heat capacity of each component constant 

and equal to its value at the entry conditions: T = T0. 

The solution heat capacity will also be considered constant and equal to its value at the entry 

conditions: 
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where IN
ix  is the feed mole fraction of component i. 
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• Density of each component (Perry and Green, 1997) 
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with ρ in g.L-1 

 T in Kelvin 

 M in g.mol-1 

 

component i Mi C1,i C2,i C3,i C4,i 

MeOH 32.042 2.288 0.2685 512.64 0.2453 

2M1B 70.135 0.91619 0.26752 465 0.28164 

2M2B 70.135 0.93322 0.27251 471 0.26031 

TAME 102.177 * * * * 

* as there is no data available for TAME, we will consider its density constant and equal to its 

value at 293 K: LgTAME /770=ρ  

 

To simplify the problem we are going to consider the heat capacity of each component constant 

and equal to its value at the entry conditions: T = T0. 

The solution density will also be considered constant and equal to its value at the entry 

conditions: 
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Starting solving the problem 
 

 Writing mass and energy balances 

In the figure is a representation of a PFR filled with a catalyst.  

 

 
       Fig. 1:Representaion of a PFR filled with catalyst. 

 

A. Steady state mass balance  

For the steady state mass balance of component i, in the volume element of length dz, we can write: 

 

actionChemicalbyformedisWhatOUTFluxTotalINFluxTotal
dzzz

Re−=
+

   (A.1) 

 

If ε is the bed porosity, the area, A, available for the catalyst particles is [(1-ε) A] and the area available 

for the fluid is [ε A]. Equation (A.1) becomes: 

 

( ) ( ) dzArAA ibdzzizi ρϕεϕε −= +,,          (A.2) 

 

where ϕi is the molar flux of component i, ρb is the bulk density and ri is the rate of formation of 

component i. 

Re-writing equation (A.2): 
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Considering a plug flow with axial dispersion, the molar flux is given by: 
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dz
dC

DCu i
axiii −=ϕ            (A.5) 

where ui is the interstitial velocity of the fluid, Ci is the concentration of component i in the fluid and 

Dax is the axial dispersion coefficient. 
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Normalizing some of the variables: 
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dividing by IN
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L
u

, equation (A.7) becomes: 
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where Pe is the dimensionless Peclet number given by 
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 as a reaction term represented by iℜ , the steady state mass balance of 

component i becomes: 
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B. Steady state energy balance  

For the steady state energy balance in the volume element of length dz, considering no dispersion, we 

can write: 

 

wallsreactor
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  (B.1) 
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where ϕh is the heat flux, R
jH∆  is the heat of reaction j, rj is the rate of reaction j, Alat is the lateral area 

of the volume element, U is the overall heat-transfer coefficient, T is the reactor temperature and Tw is 

the reactor wall temperature. 

 

Re-writing equation (B.2): 
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The heat flux can be given by: 

 

TCpui
h ρϕ =            (B.4) 

where ρ is the solution density and Cp is the solution heat capacity. 

 

If R0 is the reactor radius, the lateral area of the volume element of length dz is: 

dzRAlat 02π=            (B.5) 

and its sectional area is: 
2
0RA π=             (B.6) 

leading to: 
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Substituting into equation (B.3): 
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Normalizing the space variable: 
L
zX = , remembering the space-time definition ⎟
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The term 
0

2
RCp

U
ρ

τ  is dimensionless and is referred as NTU (number of heat transfer units). 

 

Finally, the steady state energy balance becomes: 
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C. Boundary Conditions 

In the absence of dispersion, we only need one boundary condition: 
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where T0 is the initial reactor temperature. 



 10

 Algorithm to solve the problem 

We have a non-linear system of Ordinary Differential Equations (ODE) to solve: 
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The program we developed uses subroutine DDASSL (Brenan et al., 1989) to solve this system. This 

code solves a system of differential/algebraic equations of the form delta(t, y, yprime)=0, with        

delta(i) = yprime(i) – y(i),  using the backward differentiation formulas of orders one trough five. t is 

the current value of the independent variable (in our case t = X), y is the array that contains the solution 

components at t (in our case we have: y(i) = f(i), i=1,4 and y(5) = T) and yprime is the array that 

contains the derivatives of the solution components at t. 

The program solves the system from t to tout and it is easy to continue the solution to get results at 

additional tout. In our case, we are going to get results at different values of X, between 0 and 1. 

 

This problem is rather complex because most of the other variables depend on yi: the kinetic, adsorption 

and thermodynamic equilibrium “constants” depend on T (y5), the reaction rate and the components rate 

of formation depend on yi (fi (i=1,4) and T), as the activity coefficients. 

 

In Figure 2 is the algorithm to solve our problem. 
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Fig. 2: Algorithm to solve the problem. 

 

 

 Read data from file 
T0, Tw 
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jH∆  

Calculate constants 

Q
Vετ =  

∑=
i

IN
i

IN
total CC  

IN
total

IN
i

i C
C

f =0  

Initialize the variables 
t = X = 0 

yi (i=1,4) = 
0

if  
y5 = T0 

Solve system of ODEs 
 

Call  
subroutine DASSL 
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yi 

STOP 
Yes

No

tout = X = 
X + ∆X 

 
Cp 

 
ρ 
 
 

NTU



 12

Some results 
For both cases, isothermal and non-isothermal, the feed concentrations were the same: 

0
/66.6
/33.3
/33.3

22

12

=
=
=
=
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TAME

IN
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BM

IN
BM

C
LmolC
LmolC
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These concentrations lead to a feed mole ratio MeOH/isoamylenes, RM/IA, of 1.0. 

 

 

a) Figures R.1, R.2 and R.3 represent the concentration profiles for a 10 m3 isothermal PFR, operating 

at 323 K, 343 K and 363 K, and a flow of 40 L/min. 

 

 

Fig. R.1: Concentration profiles for a 10 m3 isothermal PFR operating at 323 K. 

 

 

 
 

 

Isothermal: T = 323 K
 RM/IA = 1, Q = 40 L/min

0

1

2

3

4

5

6

7

0 0.2 0.4 0.6 0.8 1
X

C
 (m

ol
/L

)

2M1B 2M2B MeOH TAME



 13

Fig. R.2: Concentration profiles for a 10 m3 isothermal PFR operating at 343 K. 

 

 

Fig. R.3: Concentration profiles for a 10 m3 isothermal PFR operating at 363 K 
 

As the temperature increases, the reactions are faster, favoring TAME production, but the chemical 

equilibrium is moved to the opposite direction: for an operating temperature of 363 K, the equilibrium 

concentration of TAME is reached faster than for 343 K, but its value is lower. 
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b) Figure R.4 represents the exit concentrations as a function of the entering temperature, T0, for a 10 

m3 isothermal PFR operating with a flow of 40 L/min. 

 

Fig. R.4: Exit concentrations as function of T0, for a 10 m3 isothermal PFR 
 

Figure R.4 shows that there is an optimum operating temperature around 333 K that leads to a 

maximum exit concentration for TAME. It is due to the fact that we have a system with competition 

between kinetics and equilibrium, as we are going to see for the non-isothermal PFR 

 

 

c) We chose a reactor diameter of 1 m (for a volume of 10 m3 it leads to a reactor length of 12.7 m 

approximately) and for the wall temperature, we decided to use room temperature: 298 K. The entering 

temperature is 353 K. 

It is important to notice that the catalyst used in TAME production is a macroreticular strong cation ion-

exchange resin in hydrogen form (Amberlyst 15 Wet, Rohm & Haas) that has a maximum operating 

temperature of 393 K. 

 

Figure R.5 represents the concentration (a) and temperature (b) profiles for an operating flow of 200 

L/min. 
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Fig. R.5: Non-isothermal PFR: (a) concentration profiles; (b) temperature profile. 
 

Figure R.5(a) shows the competition between the three reactions: first, 2M1B and 2M2B react with 

MeOH to produce TAME and the reactants concentrations decrease and TAME concentration 

increases; but then, although MeOH and TAME concentrations are almost constant, 2M1B is still 

decreasing and 2M2B starts to increase: the third reaction, the isomerization, is now more evident. 

The temperature profile (Fig. R.5(b)) shows that the reactor seams to be almost adiabatic (no heat losses 

through the reactor walls) since the reactor temperature is always increasing. This close to adiabatic 

behavior was expected since the reactor diameter is rather large: 1 m. But the temperature reaches a 

value that is very close to the catalyst limit: remember that its maximum operating temperature is 393 K 

and the reactor is reaching 385 K. 
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To see what is the maximum temperature that the reactor reaches, we can make it adiabatic setting the 

overall heat-transfer coefficient equal to zero: U = 0. In Figure R.6 are the results for the adiabatic 

reactor. 

 

Fig. R.6: Adiabatic PFR: (a) concentration profiles; (b) temperature profile. 
 

The maximum temperature reached by the reactor is 388 K. Comparing Figures R.5 and R.6 it is easy to 

see that the non-isothermal 1m diameter PFR can be considered adiabatic: the concentration and 

temperature profiles are almost the same. 
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with a diameter of 1’’ each. To have a total reactor volume of 10 m3, each tube has a length of 5 m. In 

order to compare the results of the multi-tubular reactor with the ones obtained with the 1 m diameter 

PFR (Fig. R.5), we have to choose similar operating conditions: to have a total operating flow of 200 

L/min, the equivalent flow in each tube is 0.05 L/min; since the reactor is now really cooled, we will 

choose the “best” temperature for the cooling fluid (333 K, as seen with the isothermal behavior runs). 

Figure R.7 shows the results for one of this tubes operating in the above conditions. 

 

Fig. R.7: Multi-tubular reactor: (a) concentration profiles; (b) temperature profile. 
 

The maximum temperature reached is 358 K - in this case there are no problems with the catalyst - and 

the exit concentration of TAME is higher: 2.603 mol/L against 1.862 mol/L for the PFR in Figure R.5, 

which represents an increase of 28.5 %. 
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