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R12.3 Fluidized-Bed Reactors1 

“When a man blames others for his failures, it’s a good idea to credit 
others with his successes.” 

–– Howard W. Newton 

The fluidized-bed reactor has the ability to process large volumes of fluid. For the 
catalytic cracking of petroleum naphthas to form gasoline blends, for example, the 
virtues of the fluidized-bed reactor drove its competitors from the market. 
 Fluidization occurs when small solid particles are suspended in an upward-
flowing stream of fluid, as shown in Figure R12.3.1. 

 
Figure R12.3-1  From Kunii and Levenspiel Fluidization Engineering, Melbourne, FL 32901:  

Robert E. Krieger Pub. Co. 1969. Reprinted with permission of the publishers 

 The fluid velocity is sufficient to suspend the particles, but it is not large 
enough to carry them out of the vessel. The solid particles swirl around the bed 
rapidly, creating excellent mixing among them. The material “fluidized” is almost 
always a solid and the “fluidizing medium” is either a liquid or gas. The 
characteristics and behavior of a fluidized bed are strongly dependent on both the 
solid and liquid or gas properties. Nearly all the significant commercial applications 
of fluidized-bed technology concern gas-solid systems, so these will be treated in 
this section. The material that follows is based upon what is seemingly the best 
model of the fluidized-bed reactor developed thus far–the bubbling bed model of 
Kunii and Levenspiel. 

                                                 
1 This material is based on the article by H. S. Fogler and L. F. Brown [Reactors, ACS Symposium Series, 

vol.168, p. 31 1981, H. S. Fogler ed.], which in turn was based on a set of notes by Fogler and Brown. 
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R12.3.1 An Overview 

 We are going to use the Kunii-Levenspiel bubbling bed model to describe 
reactions in fluidized beds. In this model, the reactant gas enters the bottom of the 
bed and flows up the reactor in the form of bubbles. As the bubbles rise, mass 
transfer of the reactant gases takes place as they flow (diffuse) in and out of the 
bubble to contact the solid particles where the reaction product is formed. The 
product then flows back into a bubble and finally exits the bed when the bubble 
reaches the top of the bed. The rate at which the reactants and products transfer in 
and out of the bubble affects the conversion, as does the time it takes for the bubble 
to pass through the bed. Consequently, we need to describe the velocity at which the 
bubbles move through the column and the rate of transport of gases in and out of 
the bubbles. To calculate these parameters, we need to determine a number of fluid-
mechanics parameters associated with the fluidization process. Specifically, to 
determine the velocity of the bubble through the bed we need to first calculate: 
 1. Porosity at minimum fluidization, εmf 
 2. Minimum fluidization velocity, umf 
 3. Bubble size, db 

To calculate the mass transport coefficient, we must first calculate 
 1. Porosity at minimum fluidization, εmf 
 2. Minimum fluidization velocity, umf 
 3. Velocity of bubble rise, ub 
 4. Bubble size, db 

To determine the reaction rate parameters in the bed, we need to first calculate 
 1. Fraction of the total bed occupied by bubbles, δ     
 2. Fraction of the bed consisting of wakes, αδ 
 3. Volume of catalyst in the bubbles, clouds, and emulsion, γb, γc, and γe 
 
 It is evident that before we begin to study fluidized-bed reactors, we must 
obtain an understanding of the fluid mechanics of fluidization. In Section R12.3B, 
equations are developed to calculate all the fluid mechanic parameters (e.g., db, umf) 
necessary to obtain the mass transfer and reaction parameters. In Section R12.3.3, 
equations for the mass transfer parameters are developed. In Section R12.3.4, the 
reaction rate parameters are presented, and the mole balance equations are applied 
to the bed to predict conversion in Section R12.3.5. 

R12.3.2 The Mechanics of Fluidized Beds 

 In this section we shall first describe the regions of fluidization and calculate 
the minimum and maximum fluidization velocities. Next, the Kunii-Levenspiel 

 

The Algorithm 
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bubbling bed model is described in detail.2 Finally, equations to calculate the 
fraction of the bed comprising bubbles, the bubble size, the velocity of bubble rise, 
and the fractional volume of bubbles, clouds, and wakes are derived. 

R12.3.2A Description of the Phenomena 

 We consider a vertical bed of solid particles supported by a porous or 
perforated distributor plate, as in Figure R12.3-2(a). The direction of gas flow is 
upward through this bed. 

(a) (b) (c) (d) (e)  
Figure R12.3-2 Various kinds of contacting of a batch of solids by fluid. Adapted from Kunii & 

Levenspiel, Fluidized Engineering (Huntington, NY: Robert E. Krieger Publishing 
Co., 1977). 

 There is a drag exerted on the solid particles by the flowing gas, and at low 
gas velocities the pressure drop resulting from this drag will follow the Ergun 
equation, Equation (4-22), just as for any other type of packed bed. When the gas 
velocity is increased to a certain value however, the total drag on the particles will 
equal the weight of the bed, and the particles will begin to lift and barely fluidize. If 
ρc is density of the solid catalyst particles, Ac is the cross sectional area, hs, is the 
height of the bed settled before the particles start to lift, h, is the height of the bed at 
any time, and εs and ε are the corresponding porosities,3 of the settled and expanded 
bed, respectively; then the mass of solids in the bed, Ws, is 
 

      Ws = ρcAchs 1− εs( )= ρcAch 1− ε( ) (R12.3-1) 

                                                 
2 D. Kunii and O. Levenspiel, Fluidization Engineering (New York: Wiley, 1968). 
3 Note:  Nomenclature change in the text and lecture φ = porosity, while in this chapter ε = porosity. 
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This relationship is a consequence of the fact that the mass of the bed occupied 
solely by the solid particles is the same no matter what the porosity of the bed. 
When the drag force exceeds the gravitational force, the particles begin to lift, and 
the bed expands (i.e., the height increases) thus increasing the bed porosity, as 
described by Equation (R12.3-1). This increase in bed porosity decreases the overall 
drag until it is again balanced by the total gravitational force exerted on the solid 
particles (Figure R12.3-3(b)). 
 If the gas velocity is increased still further, expansion of the bed will continue 
to occur; the solid particles will become somewhat separated from each other and 
begin to jostle each other and move around in a restless manner. Increasing the 
velocity just a slight amount further causes instabilities, and some of the gas starts 
bypassing the rest of the bed in the form of bubbles (Figure R12.3-3(c)). These 
bubbles grow in size as they rise up the column. Coincidentally with this, the solids 
in the bed begin moving upward, downward, and around in a highly agitated 
fashion appearing as a boiling frothing mixture. With part of the gas bubbling 
through the bed and the solids being moved around as though they were part of the 
fluid, the bed of particles is said to be “fluidized.” It is in a state of aggregative, 
nonparticulate, or bubbling fluidization. 
 A further increase in gas velocity will result in slug flow (Figure R12.3-3(d)) 
and unstable chaotic operation of the bed. Finally at extremely high velocities, the 
particles are blown or transported out of the bed (Figure R12.3-3(e)). 
 The range of velocities over which the Ergun equation applies can be fairly 
large. On the other hand, the difference between the velocity at which the bed starts 
to expand and the velocity at which the bubbles start to appear can be extremely 
small and sometimes nonexistent. This observation means that if one steadily 
increases the gas flow rate, the first evidence of bed expansion may be the 
appearance of gas bubbles in the bed and the movement of solids. At low gas 
velocities in the range of fluidization, the rising bubbles contain very few solid 
particles. The remainder of the bed has a much higher concentration of solids in it 
and is known as the emulsion phase of the fluidized bed. The bubbles are shown as 
the bubble phase. The cloud phase is an intermediate phase between the bubble and 
emulsion phases. 
 After the drag exerted on the particles equals the net gravitational force 
exerted on the particles, that is, 

  
  
∆P = g ρc −ρ g( ) 1 − ε( )h  (R12.3-2) 

the pressure drop will not increase with an increase in velocity beyond this point. 
(See Figure R12.3-2.) From the point at which the bubbles begin to appear in the bed, 
the gas velocity can be increased steadily over a quite appreciable range without 
changing the pressure drop across the bed or flowing the particles out of the bed. 
The bubbles become more frequent, and the bed, more highly agitated as the gas 
velocity is increased (Figure R12.3-2(c)); but the particles remain in the bed. This 
region is bubbling fluidization. Depending on the physical characteristics of the gas, 
the solid particles, and the distributor plate; and the internals (e.g., heat exchanger 
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tubes) within the bed, the region of bubbling fluidization can extend over more than 
an order of magnitude of gas velocities (e.g., 4 to 50 cm/s in Figure R12.3-3). In other 
situations, gas velocities in the region of bubbling fluidization may be limited; the 
point at which the solids begin to be carried out of the bed by the rising gas may be a 
factor of only three or four times the velocity at incipient fluidization. 
 Eventually, if the gas velocity is continuously increased, it will become 
sufficiently rapid to carry the solid particles upward, out of the bed. When this 
begins to happen, the bubbling and agitation of the solids are still present, and this is 
known as the region of fast fluidization, and the bed is know as fast-fluidized bed. At 
velocities beyond this region, the particles are well apart, and the particles are 
merely carried along with the gas stream. Under these conditions, the reactor is 
usually referred to as a straight through transport reactor or STTR (Figure R12.3-2(e)). 
 The various regions described earlier display the behavior illustrated in 
Figure R12.3-2. This figure presents the pressure drop across a bed of solid particles 
as a function of gas velocity. The region covered by the Ergun equation is the rising 
portion of the plot (Section I: 1 < U0 < 4 cm/s). The section of the figure where the 
pressure drop remains essentially constant over a wide range of velocities is the 
region of bubbling fluidization (Section II: 4 < U0 < 50 cm/s). Beyond this are the 
regions of fast fluidization and of purely entrained flow. 

 
Figure R12.3-3 From Kunii and Levenspiel, Fluidization Engineering (Melbourne, FL:  

Robert E. Krieger, Publishing Co. 1977). Reprinted with permission of the 
publishers. 

R12.3.2B The Minimum Fluidization Velocity 

 Fluidization will be considered to begin at the gas velocity at which the 
weight of the solids gravitational force exerted on the particles equals the drag on 
the particles from the rising gas. The gravitational force is given by Equation (R12.3-
1) and the drag force by the Ergun equation. All parameters at the point where these 
two forces are equal will be characterized by the subscript “mf,” to denote that this 
is the value of a particular term when the bed is just beginning to become fluidized. 
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The combination [g (ρc – ρg)] occurs very frequently, as in Equation (R12.3-1), and 
this grouping is termed [η]. 
 

  (∆P/h) = g η (1 – εmf) (R12.3-2) 

The Ergun Equation, Equation (4-22) can be written in the form 

  
∆P
h

= ρgU
2 150 1−ε( )

Red ψ
+

7
4

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

1−ε

ψd pε3  (R12.3-3) 

where ψ = shape factor of catalyst particle, sometimes called the sphericity. 
 At the point of minimum fluidization, the weight of the bed just equals the 
pressure drop across the bed 
  Ws = ∆PAc 

  
    
g 1− ε( ) ρc − ρg( )hAc = ρ gU

2 150 1− ε( )
Rep ψ

+
7
4

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

1 − ε
ψdpε3 Ach  (R12.3-4) 

For Rep < 10, 
  

Rep =
ρgdpU

µ

⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟ , we can solve Equation (R12-5) for the minimum 

fluidization velocity to give 

  

  

umf =
ψd p( )2

150µ
g ρc − ρg( )[ ]

η
1 2 4 3 4 

εmf
3

1−εmf
 (R12.3-5) 

Reynolds numbers less than 10 represents the usual situation, in which fine particles 
are fluidized by a gas. Sometimes, higher values of the Reynolds number do exist at 
the point of incipient fluidization, and then the quadratic Equation (R12.3-5) must be 
used. 
 Two dimensionless parameters in these two equations for umf deserve 
comment. This first is ψ, the “sphericity,” which is a measure of a particle’s 
nonideality in both shape and roughness. It is calculated by visualizing a sphere 
whose volume is equal to the particle’s, and dividing the surface area of this sphere 
by the actually measured surface area of the particle. Since the volume of a spherical 
particle is  
    Vp = πdp

3 6  
and its surface area is 

    
As = πdp

2 = π 6Vp π( )1 3⎡ 
⎣ 

⎤ 
⎦ 

2

 

  
  
ψ =

As
A p

=
π 6Vp π( )2 3⎛ 

⎝ 
⎞ 
⎠ 

A p
 

(R12.3-6)
 

Calculate 
umf 

Calculate 

ψ 
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Measured values of this parameter range from 0.5 to 1, with 0.6 being a normal 
value for a typical granular solid.   
 The second parameter of special interest is the void fraction at the point of 
minimum fluidization, εmf. It appears in many of the equations describing fluidized-
bed characteristics. There is a correlation that apparently gives quite accurate 
predictions of measured values of εmf (within 10%) when the particles in the 
fluidized bed are fairly small:4  
 

  
    
εmf = 0.586ψ−0.72 µ2

ρgηdp
3

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

0.029
ρg

ρc

⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟ 

0.021

 
(R12.3-7)

 

Another correlation commonly used is that of Wen and Yu 

    εmf = 0.071 ψ( )1 3  (R12.3-8) 
and/or 

  
  
εmf =

0.091 1 − εmf( )
ψ2  

(R12.3-9)
 

When the particles are large, the predicted εmf can be much too small. If a value of 
εmf below 0.40 is predicted, it should be considered suspect. Kunii and Levenspiel5 
state that εmf is an easily measurable value. However, if it is not convenient to do so, 
Equation (R12.3-7) should suffice. Values of εmf around 0.5 are typical. If the 
distribution of sizes of the particles covers too large a range, the equation will not 
apply because smaller particles can fill the interstices between larger particles. When 
a distribution of particle sizes exists, an equation for calculating the mean diameter 
is  

  d p =
1

∑
fi

d pi

 (R12.3-10) 

where fi is the fraction of particles with diameter dpi
. 

R12.3.2C Maximum Fluidization 

 If the gas velocity is increased to a sufficiently high value, however, the drag 
on an individual particle will surpass the gravitational force on the particle, and the 
particle will be entrained in a gas and carried out of the bed. The point at which the 
drag on an individual particle is about to exceed the gravitational force exerted on it 
is called the maximum fluidization velocity. 

                                                 
4 T.E. Broadhurst and H.A. Becker, AIChE J., 21, 238 (1975). 
5 D. Kunii and O. Levenspiel, Fluidization Engineering (New York: Wiley, 1968). 

Calculate 
εmf 
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 When the upward velocity of the gas exceeds the free-fall terminal velocity of 
the particle, ut, the particle will be carried upward with the gas stream. For fine 
particles, the Reynolds numbers will be small, and two relationships presented by 
Kunii and Levenspiel6 are 
 

  

    

ut = ηdp
2 18µ

ut = 1.78 × 10−2 η2 ρgµ( )1 3
dp( )

Re < 0.4

0.4 < Re < 500( )

⎫ 
⎬ 
⎭ 

 (R12.3-11) 

 We now have the maximum and minimum superficial velocities at which we 
may operate the bed. The entering superficial velocity, u0, must be above the 
minimum fluidization velocity but below the slugging ums and terminal, ut, 
velocities. 

          umf < u0 < ut

and

          umf < u0 < ums

 

Both of these conditions must be satisfied for proper bed operation. 

R12.3.2D Descriptive Behavior of a Fluidized Bed – The 
Model Of Kunii And Levenspiel 

 At gas flow rates above the point of minimum fluidization, a fluidized bed 
appears much like a vigorously boiling liquid; bubbles of gas rise rapidly and burst 
on the surface, and the emulsion phase is thoroughly agitated. The bubbles form 
very near the bottom of the bed, very close to the distributor plate and as a result the 
design of the distributor plate has a significant effect on fluidized-bed 
characteristics. 
 Literally hundreds of investigators have contributed to what is now regarded 
as a fairly practical description of the behavior of a fluidized bed; chief among these 
is the work of Davidson and Harrison.7 Early investigators saw that the fluidized 
bed had to be treated as a two-phase system – an emulsion phase and a bubble 
phase (often called the dense and lean phases). The bubbles contain very small 
amounts of solids. They are not spherical; rather they have an approximately 
hemispherical top and a pushed-in bottom. Each bubble of gas has a wake that 
contains a significant amount of solids. These characteristics are illustrated in Figure 
R12.3-4, which were obtained from x-rays of the wake and emulsion, the darkened 
portion being the bubble phase. 
 As the bubble rises, it pulls up the wake with its solids behind it. The net flow 
of the solids in the emulsion phase must therefore be downward. 
                                                 
6 D. Kunii and O. Levenspiel, Fluidization Engineering (New York: Wiley, 1968). 
7 J. F. Davidson and D. Harrison, Fluidized Particles (New York: Cambridge University Press, 1963). 

Maximum 
velocity through 

the bed ut 
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Figure R12.3-4  Schematic of bubble, cloud, and wake. 

 The gas within a particular bubble remains largely within that bubble, only 
penetrating a short distance into the surrounding emulsion phase. The region 
penetrated by gas from a rising bubble is called the cloud. 
 Davidson found that he could relate the velocity of bubble rise and the cloud 
thickness to the size of bubble. Kunii and Levenspiel8 combined these observations 
with some simplifying assumptions to provide a practical, useable model of 
fluidized-bed behavior. Their assumptions are presented in Table R12.3-1. 
 

TABLE R12.3-1.  ASSUMPTIONS IN THE KUNII-LEVENSPIEL MODEL 

 (a) The bubbles are all of one size. 
 (b) The solids in the emulsion phase flow smoothly downward, essentially in 

plug flow. 
 (c) The emulsion phase exists at minimum fluidizing conditions. The gas 

occupies the same void fraction in this phase as it had in the entire bed at the 
minimum fluidization point. In addition, because the solids are flowing 
downward, the minimum fluidizing velocity refers to the gas velocity relative 
to the moving solids, that is,  

   
 
ue =

umf

εmf
− us  (R12.3-12) 

  (The εmf is present in this equation because umf is the superficial velocity, i.e., 
based on an empty tube cross section.) The velocity of the moving solids, us, 
is positive in the downward direction here, as in most of the fluidization 
literature. The velocity of the gas in the emulsion, ue, is taken as a positive in 
the upward direction, but note that it can be negative under some conditions. 

                                                 
8 D. Kunii and O. Levenspiel, Fluidization Engineering (New York: Wiley, 1968). 
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 (d) In the wakes, the concentration of solids is equal to the concentration of solids 
in the emulsion phase, and therefore the gaseous void fraction in the wake is 
also the same as in the emulsion phase. Because the emulsion phase is at the 
minimum fluidizing condition, the void fraction in the wake is equal to εmf. 
The wake, however, is quite turbulent, and the average velocities of both 
solid and gas in the wake are assumed to be the same and equal to the 
upward velocity of the bubbles 

 

 Several of these assumptions had been used by earlier investigators, 
particularly Davidson and Harrison.9 With the possible exception of (c), all these 
assumptions are of questionable validity, and rather obvious deviations from them 
are observed routinely. Nevertheless, the deviations apparently do not affect the 
mechanical or reaction behavior of fluidized beds sufficiently to diminish their 
usefulness. 

R12.3.2E Bubble Velocity and Cloud SSize 

 From experiments with single bubbles, Davidson and Harrison found that the 
velocity of rise of a single bubble could be related to the bubble size by 
 

    ubr = 0.71( ) gdb( )1 2  (R12.3-13) 

 When many bubbles are present, this velocity would be affected by other 
factors. The more bubbles that are present, the less drag there would be on an 
individual bubble; the bubbles would carry each other up through the bed. The 
greater number of bubbles would result from larger amounts of gas passing through 
the bed (i.e., a larger value of u0). Therefore, the larger the value of u0, the faster 
should be the velocity of a gas bubble as it rises through the bed. 
 Other factors that should affect this term are the viscosity of the gas and the 
size and density of the solid particles that make up the bed. Both of these terms also 
affect the minimum fluidization velocity, and so this term might well appear in any 
relationship for the velocity of bubble rise; the higher the minimum fluidization 
velocity, the lower the velocity of the rising bubble. 
 Adopting an expression used in gas-liquid systems, Davidson and Harrison 
proposed that the rate of bubble rise in a fluidized bed could be represented by 
simply adding and subtracting these terms: 
  ub = ubr + u0 − umf( ) 

  ub = u0 − umf + 0.71( ) gdb( )1 2
 (R12.3-14) 

 Bubble Size. The equations for the velocity of bubble rise, Equations (R12.3-
13) and (R12.3-14) are functions of the bubble diameter, an elusive value to obtain. 

                                                 
9 J. F. Davidson and D. Harrison, Fluidized Particles (New York: Cambridge University Press, 1963). 

Velocity of 
bubble rise ub 

 

Single bubble 
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As might be expected, it has been found to depend on such factors as bed diameter, 
height above the distributor plate, gas velocity, and the components that affect the 
fluidization characteristics of the particles. Unfortunately, for predictability, the 
bubble diameter also depends significantly upon the type and number of baffles, 
heat exchangers tubes, and so forth, within the fluidized bed (sometimes called 
“internals”). The design of the distributor plate, which disperses the inlet gas over 
the bottom of the bed, can also has a pronounced effect upon the bubble diameter. 
 Studies of bubble diameter carried out thus far have concentrated on 
fluidized beds with no internals and have involved rather small beds. Under these 
conditions the bubbles grow as they rise through the bed. The best relationship 
between bubble diameter and height in the column at this writing seems to be that 
of Mori and Wen,10 who correlated the data of studies covering bed diameters of 7 to 
130 cm, minimum fluidization velocities of 0.5 to 20 cm/s, and solid particle sizes of 
0.006 to 0.045 cm. Their principal equation was 

  
  

dbm − db
dbm − dbo

= e−0.3h Dt  (R12.3-15) 

In this equation, db is the bubble diameter in a bed of diameter Dt, observed at a 
height h above the distributor plate; dbo is the diameter of the bubble formed initially 
just above the distributor plate, and dbm is the maximum bubble diameter attained if 
all the bubbles in any horizontal plane coalesce to form a single bubble (as they will 
do if the bed is high enough). 
 The maximum bubble diameter, dbm has been observed to follow the 
relationship 

 
    dmaximum    dbm = 0.652 Ac u0 − umf( )[ ]0.4  (R12.3-16)

 cm cm2 cm/s 

for all beds, while the initial bubble diameter depends upon the type of distributor 
plate. For porous plates, the relationship 
 

  db 0 = 0.00376 u0 − umf( )2
,  cm  (R12.3-17) 

    dminimum  is observed, and for perforated plates, the relationship 

  db 0 = 0.347 Ac u0 − umf( ) nd[ ]0.4
 (R12.3-18) 

appears to be valid, in which nd is the number of perforations. For beds with 
diameters between 30 and 130 cm, these relations appear to predict bubble 
diameters with an accuracy of about ± 50%; for beds with diameters between 7 and 
30 cm, the accuracy of prediction appears to be approximately + 100%, – 60% of the 
observed values. 

                                                 
10 S. Mori and C. Y. Wen, AIChE J., 21, 109 (1975). 

 

  db 
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 Werther developed the following correlation based on a statistical coalescence 
model:11 

  
db

cm
= 0.853 1+ 0.272

u0 − ums

cm/s
3  1− 0.0684 

h
cm

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

1.21

 (R12.3-19) 

The bubble size predicted by this model is close to that predicted by Mori and Wen12 
for large diameter beds (2 m) and smaller than that suggested by Mori and Wen for 
small diameter beds (0.1 m). 

R12.3.2F Fraction of Bed in the Bubble Phase 

 Using the Kunii-Levenspiel model, the fraction of the bed occupied by the 
bubbles and wakes can be estimated by material balances on the solid particles and 
the gas flows. The parameter δ is the fraction of the total bed occupied by the part of 
the bubbles that does not include the wake, and α is the volume of wake per volume 
of bubble. The bed fraction in the wakes is therefore (αδ). (c.f. Figure R12.13-5) 

 
Figure R12.3-5 Wake angle θw and wake fraction of three-dimensional bubbles at ambient 

conditions; evaluated from x-ray photographs by Rowe and Partridge. Adapted from 
Kunii & Levenspiel, Fluidized Engineering, 2nd ed. (Stoneham, MA: Butterworth-
Heinemann, 1991). 

 The bed fraction in the emulsion phase (which includes the clouds) is (1 – δ –
 αδ). Letting Ac and ρc represent the cross-sectional area of the bed and the density of 
the solid particles, respectively, a material balance on the solids (Figure R12.3-4) 
gives 

                                                 
11 J. Werther, ACS Symposium Series., 72, D. Luss & V. W. Weekman, eds. (1978). 
12 S. Mori and C. Y. Wen, AIChE J., 21, 109 (1975). 
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Solids flowing

downward in emulsion = Solids flowing
upward in wakes

Acρc 1−δ −αδ( )us = αδubρc Ac

 

or 

  
  
us =

αδub
1 − δ −αδ

 (R12.3-20) 

A material balance on the gas flows gives 

  
Acu0 = Acδub + Acεmf αδub + Acεmf 1−δ −αδ( )ue

Total gast
flow rate

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ = Gas flow

in bubbles
⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ + Gas flow

in wakes
⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ + Gas flow in

emulsion
⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ 

 (R12.3-21) 

The velocity of rise of gas in the emulsion phase is 

  
 
ue =

umf

εmf
− us  (R12.3-22) 

(In the fluidization literature, us is almost always taken as positive in the downward 
direction.) Factoring the cross-sectional area from Equation (R12.3-21) and then 
combining Equations (R12.3-21) and (R12.3-22), we obtain an expression for the 
fraction δ of the bed occupied by bubbles 
 

  δ =
u0 − umf

ub − umf 1+α( )
 (R12.3-23) 

 The wake parameter, α, is a function of the particle size in Figure R12.3-5. The 
value of α has been observed experimentally to vary between 0.25 and 1.0, with 
typical values close to 0.4. Kunii and Levenspiel assume that the last equation can be 
simplified to 

  δ =
u0 − umf

ub
 (R12.3-24) 

which is valid for ub >> umf, (e.g. 
  
ub ≈

5 umf

εmf
) 

Example R12-1 Maximum Solids Hold-Up 

A pilot fluidized bed is to be used to test a chemical reaction. The bed diameter is 
91.4 cm. You wish to process 28.3 × 103 cm3 of gaseous material. The average 
particle diameter is 100 µ. The reactor height is 10 feet. Allowing for a disengaging 
height of 7 feet, this means we have a maximum bed height of 91.4 cm. The 
distributor plate is a porous disc. 
 What is the maximum weight of solids (i.e., holdup) in the bed? Other data: 

Velocity 
of solids 

us 

Velocity of gas 
in emulsion 

ue 

Volume 
fraction 

bubbles δ 
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  Color of Pellet: Brown 
 ψ: 0.7 ρg: 1.07 × 10–3 g/cm3 
 ρc: 1.3 g/cc µ: 1.5 × 10–4 poise 
 
Solution 

The amount of solids in the reactor is given by Equation (R12.3-1) 

  Ws = ρc Achs 1−εs( )= ρc Ach 1−ε( ) (R12.3-1) 

The two parameters which need to be found are εmf and δ. 

A. Calculation of εmf 

  
    
εmf = 0.586ψ−0.72 µ2

ρgηdp
3

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

0.029
ρg

ρc

⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟ 

0.021

 (R12.3-7) 

 1. Calculate gravity term 

   

    

η = g ρc −ρg( )= 980 cm2 s( )1.3 − 0.00107( )g cm3

= 1270 g cm( )2 s2( )
 

 2. Cross-sectional area 

   Ac =
πD2

4
= π( ) 91.4 cm( )2 4 = 6.56 ×103  cm 2 

  Superficial velocity 

     u0 = v 0 Ac( )= 2.83×104 6.56 ×103 = 4.32 cm s  

  Porosity at minimum fluidization (Equation (R12.3-4)) 

  
εmf = 0.586( ) 0.7( )−0.72 1.5 ×10−4 g cm •s( )2

0.00107  g cm 3( )1270  g cm2 •s2( )10−2 cm( )3

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

0.029

× 0.00107  g cm3 1.3  g cm 3( )0.021

 

     εmf = 0.58  

B. Calculation of Volume Fraction of Bubbles 

  δ =
u0 − umf

ub − umf 1+α( )
 (R12.3-23) 

 Here we see we must calculate umf and ub. 
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 Step 1. First the minimum fluidization velocity is obtained from Equation 
(R12.3-3) 

   umf =
0.7( )10−2 cm( )[ ]2

150
1270  g cm2 •s2

1.5 ×10−4 g cm •s

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

0.583

1− 0.58

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟  

     umf = 1.28 cm s  

 Step 2. To calculate ub we must know the size of the bubble db., that is, 
   ub = u0 − umf + 0.71( ) gdb( )1 2  (R12.3-14) 

 Step 3. The average size of the bubble, db, is determined by evaluating 
Equation (R12.3-15) at (h/2). 

   
dbm − db

dbm − db0
= e−0.3h Dt  (R12.3-15) 

  Where dbm and dbo are given in Equations (R12.3-16) and (R12.3-17) 
respectively. 

 Maximum bubble diameter 

  dbm = 0.652 Ac u0 − umf( )[ ]0.4
,  cm  (R12.3-16) 

  
    
dbm = 0.652( ) 6.56 × 103cm 2( )4.32 − 1.28( ) cm s[ ]0.4

 

      dbm = 34.2 cm  

 Minimum bubble diameter 

  db 0 = 0.00376 u0 − umf( )2
,  cm  (R12.3-14) 

  db 0 = 0.00376( ) 4.32  cm s −1.28  cm s( )2  

  db0 = 0.0347 cm  

 Solving for db 

  
  

34.2 − db
34.2 − 0.0347

 e−0.3h 91.4  

  db = 34.2 1− e−0.3h 91.4( ) 
     At h = 45.7 cm h 2( )            db = 4.76 cm  

 At the top of the bed (h = 91.4 cm),   db = 8.86 cm  

For purposes of the Kunii-Levenspiel model, we shall take the bubble 
diameter to be 5 cm.  
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 Step 4. We now can return to calculate the velocity of bubble rise and the 
fraction of bed occupied by bubbles from Equation (R12.3-14) we 
have 

   
    
ub = 4.32  cm s − 1.28  cm s + 0.71( ) 980  cm s 2( )5  cm( )[ ]0.5

 

   ub = 52.8 cm s  

From Figure (R12.3-5) we see that a 100 µ size particle corresponds to a value 
of α of 0.5. Substituting this value into Equation (R12.3-23), the fraction of the 
bed occupied by the bubble is 
 

  
  
δ =

4.32 −1.28
52.8 − 1.28( ) 1.5( )  

    δ = 0.060  

 Thus 94% of the bed is in the emulsion phase plus the wakes. 

C. The Amount of Solids Hold-Up, Ws 

  

    

Ws = Ach 1 − δ( ) 1 − εmf( )ρs = 6.56 ×103( )91.4( ) 0.94( ) 0.42( )ρs

= 2.37 × 105  cc of solid( )ρs

= 2.37 ×105( )1.3( ) = 3.08 ×105  g of solid

 

  
  

or

Ws = 678 lb of solid particles
 

R12.3.3 Mass Transfer In Fluidized Beds 

 There are two types of mass transport important in fluidized-bed operations. 
The first is the transport between gas and solid. In some situations this can affect the 
analysis of fluidized-bed behavior significantly, and in others it might not enter the 
calculations at all. In the treatment of this type of transfer, it will be seen that this 
type of transport is quite similar to gas-solid mass transfer in other types of 
operations. 
 The second type of mass transfer is unique to fluidized-bed operations. It 
concerns the transfer of material between the bubbles and the clouds, and between 
the clouds and the emulsion (Figures R12.3-3, R12.3-5, and R12.3-6). In almost every 
type of fluidized-bed operation, there are significant gas-phase concentration 
differences between the various elements of the fluidized bed. Consequently, 
calculations involving this type of mass transfer occur in almost every fluidized-bed 
analysis. 
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Figure R12.3-6  Transfer between bubble, cloud, and emulsion. 

 
R12.3.3A Gas-Solid Mass Transfer 

 In the bubble phase of a fluidized bed, the solid particles are sufficiently 
separated so that in effect there is mass transfer between a gas and single particles. 
The most widely used correlation for this purpose is the 1938 equation of Fröessling 
(1938) for mass transfer to single spheres given in Chapter 11. 
 

    Sh = 2.0 + 0.6( ) Re( )1 2 Sc( )1 3  (R12.3-25) 
 

The relative velocity between the solid particle and the gas used in calculating the 
Reynolds number will be taken as u0. 
 In the emulsion phase, the equation would be one that applied to fixed-bed 
operation with a porosity in the bed equal to εmf and a velocity of umf. The equation 
recommended by Kunii and Levenspiel:13 
 

  
    
Sh = 2.0 + 1.5( ) Sc( )1 3 1 − ε( ) Re( )1 2[ ] (R12.3-26) 

 

  for 5 < Re < 120, and ε < 0.84 
 

 Mass transfer coefficients obtained from these relationships may then be 
combined with mass transfer among the various phases in the fluidized bed to yield 
the overall behavior with regard to the transport of mass. Owing to the small 
particle sizes and high surface area per volume of solids used in fluidized beds, the 
mass transfer from the gas to the solid surface is usually quite rapid and 
consequently it seldom limits the reaction. 

                                                 
13 D. Kunii and O. Levenspiel, Fluidization Engineering (New York: Wiley, 1968). 

Transport 
from gas to 

single 
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Figure R12.3-7 Sketch of flow pattern in a fluidized bed for downflow of emulsion gas, ue/u0 < 0 

or u0/umf > 6 to 11. Adapted from Kunii & Levenspiel, Fluidized Engineering, Robert 
E. Krieger Publishing Co., Huntington, New York, 1977. 

R12.3.3B Mass Transfer Between The Fluidized-Bed 
Phases 

 For the gas interchange between the bubble and the cloud, Kunii and 
Levenspiel14 defined the mass transfer coefficient Kbc (s–1) in the following manner: 
 

   WAbc = Kbc CAb − CAc( ) (R12.3-27) 

 Where CAb and CAc are the concentration of A in the bubble and cloud 
respectively, (mole/dm3) and WAbc represents the number of moles of A transferred 
from the bubble to the cloud per unit time per unit volume of bubble (mole/dm3/s). 
The concept of basing all mass transfer (and later, all reaction) on the bubble volume 
proves to simplify the calculations markedly. For the products, (e.g., B in A → B) the 
rate of transfer into the bubble from the cloud is given by a similar equation 
   WBcb = Kcb CBc − CBb( ) (R12.3-28) 

 The mass transfer coefficient Kbc can also be thought of as an exchange 
volume q between the bubble and the cloud. 
    WBcb = qbCAb − qcCAc = qo CAb −CAc( ) (R12.3-29) 
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where qb = Volume of gas flowing from the bubble to the cloud per unit time per 
unit volume of bubble 

 qc = Volume of gas flowing from the cloud to the bubble per unit time per 
unit volume of bubble 

 qo = Exchange volume between the bubble and cloud per unit time per unit 
volume of bubble (i.e., Kbc) 

  (qo = qc = qb) 

 Using Davidson’s expression for gas transfer between the bubble and the 
cloud, and then basing it on the volume of the bubble, Kunii and Levenspiel15 

obtained this equation for evaluating Kbc: 
 

  Kbc = 4.5
umf

db

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ + 5.85

DAB
1 2  g1 4

db
5 4

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ , (R12.3-30) 

where umf is in cm/s, db is in cm, DAB is the diffusivity (cm2/s) and g is the 
gravitational constant (980 cm/s2). 
 We note 
  Kbc = Kcb 

and a typical value of Kbc is 2 s–1. 
 Similarly, these authors defined a mass transfer coefficient for gas 
interchange between the cloud and the emulsion: 
 

  
 

WAce = Kce CAc − CAe( )

WBce = Kce CBe − CBc( )
 (R12.3-31) 

where WAce is the moles of A transferred from the cloud to the emulsion per unit 
time per unit volume of bubble. Note that even though this mass transfer does not 
involve the bubble directly, it is still based on the bubble volume. 
 Using Higbie’s penetration theory and his analogy for mass transfer from a 
bubble to a liquid, Kunii and Levenspiel16 developed an equation for evaluating Kce: 

  Kce = 6.77
εmf DABub

db
3

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

1 2

 (R12.3-32) 

where ub is velocity of bubble rise in cm/s and the other symbols are as defined at 
Equation (R12.3-30). A typical value of Kce is 1 s–1. Kce can also be thought of as the 
exchange volume between the cloud and the emulsion. 
                                                                                                                                                       
14 D. Kunii and O. Levenspiel, Fluidization Engineering (New York: Wiley, 1968). 
15 D. Kunii and O. Levenspiel, Fluidization Engineering (New York: Wiley, 1968). 
16 D. Kunii and O. Levenspiel, Fluidization Engineering (New York: Wiley, 1968). 

Mass transfer 
between bubble 

and cloud 

Mass transfer 
between cloud 
and emulsion 

Kbc ≅ 2 s–1 
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 With knowledge of the mass transfer coefficients, the amount of gas 
interchange between the phases of a fluidized bed can be calculated and combined 
to predict the overall mass transfer behavior or reaction behavior of a fluidized-bed 
process. 

R12.3.4 Reaction Behavior in a Fluidized Bed 

 To use the Kunii-Levenspiel model to predict reaction rates in a fluidized-bed 
reactor, the reaction rate law for the heterogeneous reaction per gram (or other fixed 
unit) of solid must be known. Then the reaction rate in the bubble phase, the cloud, 
and the emulsion phase, all per unit of bubble volume, can be calculated. Assuming 
that these reaction rates are known, the overall reaction rate can be evaluated using 
the mass transfer relationships presented in the preceding section. All this is 
accomplished in the following fashion. 
 We consider an nth order, constant-volume catalytic reaction. In the bubble 
phase 
  rAb = −kbCAb

n  

in which the reaction rate is defined per unit volume of bubble. In the cloud, 

   rAc = −kcCAc
n  

and similarly in the emulsion, 
   rAe = −keCAe

n  

where ke, kc and kb are the specific reaction rates in the emulsion cloud, and bubble 
respectively. In the latter two equations, the reaction rate is also defined per unit 
volume of bubble. 

R12.3.5 Mole Balance on the Bubble, the Cloud, and the 
Emulsion 

 Material balances will be written over an incremental height ∆z for substance 
A in each of the three phases (bubble, cloud, and emulsion) (Figure 
R12.3-7). 

   
Figure R12.3-8  Section of a bubbling fluidized bed 

RATE LAWS 
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R12.3.5A Balance on Bubble Phase 

 The amount of A entering at z is the bubble phase by flow, 

  ub AcCAb( ) δ( )  =
Molar flow rate

of A assuming the
entire bed is filled

with bubbles

⎛ 

⎝ 

⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ ⎟ 

Fraction of the
bed occupied
by bubbles

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
   

A similar expression can be written for the amount of A leaving in the bubble phase 
in flow at z + ∆z. 
 

In by flow Out by flow + Out by mass
Transport + Generation

ub AcCAb( ) δ( ) x
− ub AcCAbδ( )z+∆x − Kbc CAb − CAc( )Ac∆zδ − kbCAb

n Ac∆zδ = 0
 

Dividing by   Ac∆zδ  and taking the limit as   ∆z → 0  
 A balance on A in the bubble phase for steady state operation in section ∆z. 

  
  
ub

dCAb
dz

= −kbCAb
n − Kbc CAb − CAc( ) (R12.3-33) 

R12.3.5B Balance on Cloud Phase 

 In the material balance on the clouds and wakes in the section ∆z, it is easiest 
to base all terms on the volume of bubble. The material balance for the clouds and 
wakes is 
 

  ubδ
3 umf εmf( )

ubr − umf εmf( )
+α

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

dCAc

dz
= Kbc CAb − CAc( )− Kce CAc − CAe( )− kcCA

n  (R12.3-34) 

R12.3.5C Balance on the Emulsion 

 The fraction of the bed in the emulsion phase is (1 – δ – αδ). The material 
balance for A in the emulsion the following expression for the emulsion-phase 
material balance on A results in 
 

  ue
1−δ −αδ

δ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

dCAe

dz
= Kce CAc − CAe( )− keCAe

n  (R12.3-35) 

The three material balances thus result in three coupled ordinary differential 
equations, with one independent variable (z) and three dependent variables (CAb, 
CAc, CAe). These equations can be solved numerically. The Kunii-Levenspiel model 
simplifies these still further, by assuming that the derivative terms on the left-hand 
side of the material balances on the cloud and emulsion are negligible in comparison 

Balance on 
the bubble 

Balance on 
the clouds 

Balance on 
the emulsion 



3rd Edition, CD ROM Chapter 12 

R12-22 
CD-Ch12FluidizedBed.doc 

with the terms on the right-hand side. Using this assumption, and letting t = z/ub 
(i.e., the time the bubble has spent in the bed), the three equations take the form: 
 

 
  
dCAb

dt
= − kbCAb

n( )− Kbc CAb − CAc( ) (R12.3-36) 

   Kbc CAb − CAc( )= kcCAc
n + Kce CAc − CAe( ) (R12.3-37) 

 Kce CAc − CAe( )= keCAe
n  (R12.3-38) 

 

or only one differential equation and two algebraic equations. In all equations,  kCA
n  is 

the g-moles per second reacted in the particular phase per volume of bubbles. 

R12.3.5D Partitioning of the Catalyst 

 To solve these equations, it is necessary to have values of kb, kc, and ke. Three 
new parameters are defined: 
 

  

γ b :  
Volume of solid catalyst dispersed in bubbles

Volume of bubbles

γ c :  
Volume of solid catalyst in clouds and wakes

Volume of bubbles

γ e :  
Volume of solid catalyst in emulsion phase

Volume of bubbles

 

First of all the specific reaction rate of solid catalyst , kcat must be known. It is 
normally determined from laboratory experiments. The term kcat   CA

n  is the g-moles 
reacted per volume of solid catalyst. Then 
 
      kb = γbkcat;   kc = γ ckcat;   ke = γekcat  (R12.3-39) 

  
    
kcat = ρc × ′ k =

g cat
cm 3cat

×
cm 3

g cat ⋅ s
cm 3

mol

⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟ 

n−1

=
cm 3

cat ⋅ s
cm 3

mol

⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟ 

n −1

 

The term k′ is the specific reaction rate per weight of catalyst. 
 The value of γb ranges between 0.001 and 0.01, with 0.005 being the more 
typical number. The volume fraction of catalyst in the clouds and wakes is (1 – εmf). 
The volume of cloud and wakes per volume of bubble is 

  
  

Vc
Vb

=
3 umf εmf( )

ub − umf εmf( ) 

so the expression for γc is 

THE 
BALANCE 

EQUATIONS 

Relating the 
specific 

reaction rates 

The volume of 
catalysts in the 

clouds is γc. 

Note 

Guess 
γb  ~ 0.01 
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  γ c = 1−εmf( )
3 umf εmf( )

ub − umf εmf( )
+α

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

 (R12.3-40) 

It turns out that the value of α is normally far from insignificant in this expression 
for γc and represents a weakness in the model because there does not yet exist a 
reliable method for determining α. The typical values of γc ranges from 0.3 to 0.4. 
The value of γc can be quite incorrect on occasion, in particular, a value of α=1. 
 The volume fraction of the solids in the emulsion phase is again (1 – εmf). The 
volume of emulsion per volume of bubble is 
 

  
Ve

Vb
=

1−δ
δ

−
Volume of clouds and wakes

Volume of bubbles
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  

and so the expression for γe is 

  
  
γ e = 1 − εmf( ) 1− δ

δ
⎛ 
⎝ 

⎞ 
⎠ − γc − γ b  (R12.3-41) 

Typical values of γb, γc, and γe are 0.005, 0.2, and 1.5, respectively. Using the 
expressions given above, the three balance equations become 
 

 Bubble balance 
dCAb

dt
= − γ b kcatCAb

n( )− Kbc CAb − CAc( ) (R12.3-42) 

 Cloud balance   Kbc CAb − CAc( )= γckcatCAc
n + Kce CAc − CAe( ) (R12.3-43) 

 Emulsion balance  Kce CAc − CAe( )= γ ekcatCAe
n  (R12.3-44) 

R12.3.5E Solution to the Balance Equations for a First-Order 
Reaction 

 If the reaction is first order, then the CAc and CAe can be eliminated using the 
two algebraic equations, and the differential equation can be solved analytically for 
CAb as a function of t. An analogous situation would exist if the reaction were zero. 
Except for these two situations, solution to these two equations must be obtained 
numerically. 
 For first-order reactions, we can combine the three balance equations into one 
differential equation, which we can then solve to determine the conversion achieved 
in a fluidized-bed reactor. In addition, the closed form solution allows us to examine 
certain limiting situations in order to determine which operating parameters are 
most influential in dictating bed performance. Here we can pose and ask a number 
of “What if . . .” questions. To arrive at our fluidized-bed design equation for a first-
order reaction, we simply express both the concentration of A in the emulsion, CAe, 

The value of 
catalysts in the 
emulsion is γe. 

For reactors 
other than first 
or zero order, 

these equations 
must be solved 

numerically. 
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and in the cloud, CAc, in terms of the bubble concentration, CAb. First, we use the 
emulsion balance 
 

   Kce CAc − CAe( )= γ ekcatCAe
n  (R12.3-45) 

to solve for CAe in terms of CAc. 
 Rearranging (R12.3-45) for a first-order reaction (n = 1), we obtain 

  
 
CAe =

Kce
γ ekcat + Kce

CAc  (R12.3-46) 

We now use this equation to substitute for CAe in the cloud balance 

  
  
Kbc CAb − CAc( )= CAcγ ckcat + Kce CAc −

KceCAc
γ ekcat + Kce

⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟  

Solving for CAc in terms of CAb 

  

  

CAc =
Kbc

γ ckcat + Kceγekcat
γ ckcat + Kce

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ + Kbc

CAb  (R12.3-47) 

 We now substitute for Cac in the bubble balance 

  

  

dCAb
dt

= γ bkcatCAb + CAb −
KbcCAb

γckcat + Kbc + Kceγ ekcat
γekcat + Kce

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

 

Rearranging 

 
    

dCAb
dt

= kcatCAb γb +
γ eγckcatKbc + γcKbcKce + Kceγ eKbc

γ eγ ckcat
2 + Kceγ ckcat + Kbcγ ekcat + KceKbc + Kceγekcat

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥  

After some further rearrangement, 

  −
dCAb

dt
= kcatCAb γ b +

1
kcat

Kbc
+

1

γ c +
1

1
γ e

+
kcat

Kce

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ ⎟ 

 (R12.3-48) 
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KR = γb +
1

kcat
Kbc

+
1

γc + 1
1
γ e

+
kcat
Kce

 (R12.3-49) 

  
 
−

dCAb
dt

= kcatKR CAb  (R12.3-50) 

 Expressing CAb as a function of X, that is, 

  CAb = CA0 1− X( ) 
We can substitute to obtain 

  
  
dX
dt

= kcatKR 1 − X( ) 

and integrating 

  
  
ln

1
1 − X

⎛ 
⎝ 

⎞ 
⎠ = kcatKRt  (R12.3-51) 

The height of the bed necessary to achieve this conversion is 

  h = tub 

  
  
h =

ub
kcatKR

 ln  
1

1 − X
 (R12.3-52) 

The corresponding catalyst weight is 

  
  
W = ρcA ch 1− εmf( )1− δ( ) (R12.3-53) 

  
    
W =

ρcA cub 1 − εmf( )1 −δ( )
kcatKR

 ln  
1

1 − X
 (R12.3-54) 

R12.3.5F The Procedure 

 Unfortunately, one must use an iterative procedure to calculate the catalyst 
weight. This predicament is a consequence of the fact that both KR and ub depend 
upon the bubble diameter, which depends upon the bed height, Equation (R12.3-52). 
Consequently, one should check the estimated average bubble diameter using the 
value of h calculated from Equation (R12.3-52). A flow chart outlining this procedure 
is shown in Figure R12.3-9. 
 

The overall 
transport 

coefficient KR 
for a first-order 

reaction. 

The design 
equation 
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Figure R12.3-9 Computational algorithm for fluidized-bed reactor design. Reprinted with 

permission from Fogler and Brown, “Reaction Control and Transport,” Chemical 
Reactors, ACS Symposium Series, vol. 168, 1981, H.S. Fogler, ed. 

 

Example R12-2 Catalytic Oxidation of Ammonia 

 Massimilla and Johnstone17 studied the catalytic oxidation of ammonia in a 
fluidized-bed reactor. Under their experimental conditions, the reaction was first-
order, dependent only upon the ammonia concentration, and without a significant 
change in volumetric flow rate. In one of their runs, 4 kg of catalyst were used with 
a gas flow rate of 818 cm3/s at reaction conditions. A conversion of 22% of the 
entering ammonia was obtained. Predict this conversion using the Kunii-
Levenspiel model. 
 

                                                 
17 L. Massimilla and R.F. Jornstone, Chem. Eng. Sci. 16, (105) (1961). 
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Other data: 

 
P = 840 torr =1.11 atm

T = 523  K 250°C( )
 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 
 Operating conditions 

 
Dt =11.4 cm

Distributor plate is porous
stainless steel.

 

⎫ 

⎬ 
⎪ 

⎭ ⎪ 
 Reactor 

 
  

v 0 = 818 cm3 s  @ reaction conditions

Composition :  10% NH3,  90% O2

 
⎫ 
⎬ 
⎪ 

⎭ ⎪ 
 Feed 

 

    

dp = 105 µm 0.0105 cm( )

ψ = 0.6 (assumed)

ρp = 2.06 g cm3( )
hs = 38.9 cm( )

 

⎫ 

⎬ 

⎪ 
⎪ 
⎪ ⎪ 

⎭ 

⎪ 
⎪ 
⎪ 
⎪ 

 Catalyst 

 
    

−rA = kCNH 3
gmoles NH 3 s( ) cm 3  of catalyst( )( )

kcat = 0.0858 s−1 @ reaction conditions

⎫ 

⎬ 
⎪ ⎪ 

⎭ 
⎪ 
⎪ 

 Reaction rate 

 

    

ρg = 7.85 ×10−4  g cm 3

µg = 2.98 × 10−4  g cm ⋅ s

DAB = 0.618 cm 2 s

 

⎫ 

⎬ 

⎪ 
⎪ ⎪ 

⎭ 

⎪ 
⎪ 
⎪ 

 Fluid properties 
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Solution 

A. Mechanical Characteristics of Bed 

 Step 1. Gravitation term, η 

  

η = g ρc − ρg( )
= 980  cm s2  2.06 − 7.85 ×10−4( )g cm3

= 2.02 ×103  g s( )2 cm( )2

 

 Step 2. Porosity of bed a minimum fluidization, εmf 

  
    
εmf = 0.586ψ−0.72 µ2

ρgηdp
3

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

0.029
ρg

ρc

⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟ 

0.021

 (R12.3-7) 

  

    

= 0.586( ) 0.6( )−0.72 2.98 ×10−4 g cm ⋅s( )2⎧ ⎨ 
⎩ 

                             

7.85 × 10−4( )2 2.02 × 103 g cm 2 ⋅ s 2( )0.0105  cm( )3⎡ 
⎣ 

⎤ 
⎦ 
⎫ 
⎬ 
⎭ 

0.029

× 7.85  g cm 3 × 10−4 2.06  g cm 3( )0.021

 

    εmf ~ 0.65       εmf = 0.657  

 Step 3. Gas velocity at minimum fluidization  

  

      

umf =
ψdp( )2
150µ

g ρc − ρg( )[ ]
η

1 2 4 3 4 

εmf
3

1 − εmf
 (R12.3-5) 

  

    

= 0.6( ) 0.0105  cm 2( )[ ]2 2.02 ×10−3 g cm 2 ⋅ s2( )0.657( )3

150( ) 2.98 × 10−4 g cm ⋅ s( )1 − 0.657( )[ ]
 

    umf ~ 1.5 cm s       umf = 1.48 cm s  

 Step 4. Entering gas velocity u0  

  
  
u0 = v 0 Ac = v 0 πDt

2 4( ) 

  
    
= 818  cm 3 s π( ) 11.4  cm( )2 4[ ] 
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    uo ~ 8 cm s   u0 = 8.01 cm s  

 Step 5. Is u0within a reasonable operating range? 

  Check ut. 

  
    
ut = 1.78 × 10−2 η2 ρgµ( )1 3

dp( ) (R12.3-11) 

  

    

= 1.78 × 10−2( )2.02 × 10−3 g cm 2 ⋅ s2( )2⎡ 
⎣ 

      7.85 × 10−4 g cm3( )2.98 × 104 g cm ⋅ s( )]1 3
0.0105( )

 

    ut ~ 70 cm s      ut = 71.1 cm s  Maximum fluidization gas velocity 
  (Particle blown out of the bed) 

  Are NRe in proper range for use of Equations (R12.3-6) and (R12.3-11)? 

   
  
NRe =

dpρgu
µ

 

  

At umf:
 

    

NRe = 0.0105 cm( ) 7.85 × 10−4 g cm 3( )1.48 cm s( )

                                          2.98 ×10−4  g cm ⋅s( )
= 0.0409 (OK,  since it is <  10)

 

  

At ut

 

    

NRe = 0.0105 cm( ) 7.85 × 10−4  g cm 3( )71.1 cm s( )

                                           2.98 ×10−4  g cm ⋅s( )
= 1.97 (OK,  since 0.4 < N Re < 500)

 

  Thus u0 is 5.4 times umf, and well below ut. 

 Step 6. Bubble sizes, dbo, dbm, and db 

  
    
db0 = 0.00376 uo − umf( )2 ,  cm   (R12.3-17) 

  = 0.00376   8.01 cm s − 1.48 cm s( )2  

  db  = 0.160 cm 

  dm = 0.652 Ac u0 − umf( )[ ]0.4
 (R12.3-18) 
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  = 0.652 
    

π 11.4( )2 4[ ]8.01 cm s − 1.48 cm s( ){ }0.4
cm  

dbm = 08.8 cm     dbm = 8.79  cm  (Since this is smaller than column diameter, 
slugging will not occur.) 

 

 Step 7. Bubble sizes, dbo, dbm, and db 

  The unexpanded bed height is 38.9 cm. The expanded bed height will 
probably be 40 to 50% greater, say ~ 60 cm. We therefore will assume 
the average bubble size will be taken as the one calculated for (h/2) = 
30 cm. 

 

 Step 8. Average bubble diameter 

  
db = dbm − dbm − db0( )e−0.3h Dt  (From Equation R12.3-15)

= 8.79 − 8.79 − 0.160( )e− 0.3( ) 30( ) 11.4
 

    db ~ 5 cm       db = 4.87 cm  

 Step 9. Rise velocity of single bubble 

 
    
ubr = 0.71( ) gdb( )1 2 = 0.71( ) 980 cm s2( )4.87 cm( )[ ]1 2

= 49.0 cm s  (R12.3-13) 

 Step 10. Rise velocity of a bubble when many bubbles are present 

  ub = u0 − umf + 0.71( ) gdb( )1 2  (R12.3-14) 

      = 8.01 −1.48 + 49.0 = 55.6 cm s  

    ub ~ 55  cm       ub = 55.6  cm /s 

 From Figure (R12.3-5) for glass spheres with dp = 0.105 mm, then α = 0.4 

 Step 11. Fraction of bed in bubble phase 

  
    
δ = uo − umf( ) ub − umf 1+ α( )[ ] (R12.3-23) 

      = 8.01− 1.48( ) 55.6 − 1.48 1+ 0.4( )[ ] 

    δ ~ 0.12       δ = 0.122  

 Step 12. Bed height 
  

  

h Ac( )
Volume
of bed

1 2 3 
  1−δ( )

Volume in
emulsion,

clouds,
and wakes

1 2 3 
  1−εmf( )

Volume of solids
in emulsion,
clouds, and 

wakes

1 2 4 3 4 
  ρ p = mass of catalyst in bed  
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h =
W

A c 1 − δ( ) 1− εmf( )ρc

=
4000 g

π 11.4 cm( )2 4[ ]1− 0.122( ) 1 − 0.657( ) 2.06 gm cm 3( )
= 63.2 cm

 

  Since the estimated bed height of 60 cm is sufficiently close to the 
calculated value of 63.2 cm, one can proceed further in the 
calculations without making a new estimate of h. 

 
C. Mass Transfer and Reaction Parameters: 

 Step 1. Bubble-cloud mass transfer coefficient 

  
    
Kbc = 4.5 umf db( )+ 5.85 D1 2 g1 4 db

5 4( ) (R12.3-30) 

  

    

= 4.5 1.48cm s( ) 4.87cm( ) + 5.85 0.61cm 2 s( )1 2
980cm s 2( )1 4

4.87cm( )5 4

= 1.37 s −1 + 3.54 s −1
 

    Kbc ~ 5 s−1       Kbc = 4.92 s−1  

 Step 2. Cloud-emulsion mass-transfer coefficient 

  
    
Kce = 6.78 εmf Dub db

3( )1 2
  (R12.3-32) 

  
    
= 6.78 0.657( ) 0.61cm 2 s( )55.6cm s( ) 4.87cm( )3[ ]1 2

 

    Kce ~ 3 s−1      Kce = 3.00 s−1  

 Step 3. Volume of catalysts in the bubble per volume of bubble. 

γb = 0.01 (assumed) 
 

 Step 4. Volume of catalyst in clouds and wakes/cm3 of bubbles 

  
    
γ c = 1 − εmf( ) 3 umf εmf( ) ub − umf εmf( )[ ]+ α{ } 

  
    
= 1− 0.657( ) 3( ) 1.48 0.657( ) 49.0 − 1.48 0.657( )[ ]+ 0.4{ } (R12.3-40) 

    γ c ~ 0.2       γ c = 0.187  

 Step 5. Volume of catalyst in emulsion/cm3 of bubbles 

  
    
γ e = 1 − εmf( ) 1 − δ( ) δ[ ]− γ c − γ b  

Good Guess 
of h = 60 cm 

Order of 
magnitude 
parameters 

⇓
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      = 1− 0.657( ) 1− 0.122 0.122( )[ ]− 0.187 − 0.005  (R12.3-41) 

    γ e ~ 2       γ e = 2.28  

 Step 6. Calculate KR and X from Equations (R12.3-49) and (R12.3-51) 

   X =1− exp −
KR kcat h

ub

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥  

  where 

   

  

KR = γb +
1

kcat
Kbc

+
1

1
1
γe

+
kcat
Kce

+ γ c

 (R12.3-49) 

   

    

KR = 0.01+
1

0.0858 s
4.92 s

+ 1
1

1
2.28

+
0.0858 s

3.0 s

+ .187

 

    KR ~ 2   

    

KR = 0.01+
1

0.0174 +
1

.187 + 2.14

= 2.23  

     KR = 2.23  

   

  

ln 1
1 − X

⎛ 
⎝ 

⎞ 
⎠ = kcatKRt

= kcatKR
h
ub

 

 Solving for X 

   
    

X = 1− exp −
2.23( ) 0.0858  s −1( )63.2  cm( )

55.6  cm s

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥  

   X = 0.20 

This is close to the observed value of 22% conversion. 
    

 

R12.3.6 Limiting Situations 

 As engineers, it is important to deduce how a bed will operate if one were to 
change operating conditions such as gas flow rate or catalyst particle size. To give 
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some general guides as to how changes will affect bed behavior, we shall consider 
the two limiting circumstances of reaction control and transport control. 
  In the K-L bubbling bed model, reaction occurs within the three phases of the 
bed, and material is continuously transferred between the phases. Two limiting 
situations thus arise. In one, the interphase transport is relatively fast, and transport 
equilibrium is maintained, causing the system performance to be controlled by the 
rate of reaction. In the other, the reaction rate is relatively fast, and the performance 
is controlled by interphase transport between the bubbles, clouds, and emulsions. It 
will be shown that the ammonia oxidation example used earlier is essentially a 
reaction-limited system. 
 The overall reaction rate in the bed is proportional to KR, so the reciprocal of 
KR can be viewed as an overall resistance to the reaction. The different terms and 
groups on the right-hand side of Equation (R12.3-49) can be viewed as individual 
resistances,zs which can be arranged in series or parallel to give the overall 
resistance. 
 

  R0 =
1

KR
=

1
1
1

γ b

+
1

kcat

Kbc
+

1
1
1
γ c

+
1

1
γ e

+
kcat

Kce

 (R12.3-55) 

  R0 =
1

1
Rrb

+
1

Rtbc +
1

1
Rrc

+
1

Rre + Rtce

 (R12.3-56) 

in which: 

 Rrb = 
    

1
γ b

 = Resistance to reaction in the bubble 

 Rtbc = 
  

kcat
Kbc

 = Resistance to transfer between bubble and cloud 

 Rrc = 
    

1
γ c

 = Resistance to reaction in cloud 

 Rre = 
    

1
γ e

 = Resistance to reaction in the emulsion 

 Rtce = 
  

kcat
Kce

 = Resistance to transfer between cloud and emulsion 
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Example R12-3  Calculation of Resistances 

 Calculate each of the resistances to reaction and transfer, and the relationship 
between CAb, CAc and CAe for the ammonia oxidation reaction described in 
Example R12-2. Assume γb = 0.01. 
 
Solution 

 

    

Rrb = 1
γb

= 1
0.01

= 100

Rtbc =
kcat
Kbc

=
0.0858

4.92
= 0.0174

Rre =
1

γ e
=

1
2.28

= 0.439

Rrc =
1

γc
=

1
0.187

= 5.35

Rtcb =
kcat
Kce

=
0.0858

3.0
= 0.0286

 

To relate CAe and CAc, we rearrange Equation (R12-67) for a first-order reaction as 

  
    
CAe =

Kce
γ e + kcat + Kce

⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟  CAc =

3.00
2.28( ) 0.0858( )+ 3.00

 CAc  

  CAe = 0.939 CAc 

 The analog electrical resistance for the system is shown in Figure R12.3-10 
along with the corresponding resistances for this reaction. As with its electrical 
analog, the reaction will pursue the path of least resistance, which in this case is 
along the right hand-side branch of Figure R12.3-10. If the major resistance in this 
side, the resistance to reaction in the emulsion Rre, could be reduced, a greater 
conversion could be achieved for a specific catalyst weight. To reduce Rre, one 
needs to look for ways of increasing γe. 
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Rrc=5.35

Rrb=100

Rtbc=0.174

Rtce=0.029

Rre=0.439
Rtbe+Rre+Rrc=0.43

Rtbc=0.174

Rrb=100

 
Figure R12.3-10  Electrical analog. 

  

    

γ e = 1 − εmf( ) 1 − δ
δ

−
3umf εmf

0.71 db g( )1 2 − umf εmf( )− α
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥  (R12.3-57) 

Examination of Equation (R12.3-57) shows that decreasing the bubble fraction, δ, 
and the minimum fluidization velocity would increase γe and hence the 
conversion. The minimum fluidization velocity could be decreased by decreasing 
the particle size. We now will investigate how the various parameters will affect 
the conversion for different limiting situations. 
 

R12.3.6A The Slow Reaction 

 In addition to the obvious way of increasing the temperature to increase the 
conversion, and perhaps some unwanted side reactions, there are other ways the 
conversion may be increased when the reaction is slow. From Equation (R12.3-31) 
we know the conversion depends upon h, kcat, ub, and KR. We will first determine KR 
under this situation. For a slow reaction, kcat is small when compared to Kbc and Kce 
so that resistance to transport is essentially zero, that is, 

  
  

kcat
Kbc

≈ 0  (R12.3-58) 

and 

  
  

kcat
Kce

≈ 0  (R12.3-59) 

then 

  

    

KR = γb +
1

0 +
1

γ c + 1
1
γ e

+ 0

= γ b + γc + γ e  (R12.3-60) 

Electrical 
Analog 
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Using Equation (R12-64) to substitute for γe, we have 

  
  
KR = γb + 1− εmf( ) 1 − δ

δ
⎛ 
⎝ 

⎞ 
⎠  (R12.3-61) 

neglecting γb, with respect of the second term yields 

  
  
KR = 1 − εmf( ) 1− δ

δ
⎛ 
⎝ 

⎞ 
⎠  (R12.3-62) 

Consequently, we see that KR can be increased by decreasing δ the volume fraction 
of bubbles. For the ammonia oxidation example, this would give 
 

  KR ≈ 2.47 

or about 11% higher than the value obtained by the more elaborate calculations 
which included the transport. This would predict a conversion of 21.4%, very close 
to the 20% given by the method which includes the transport limitations. Thus the 
ammonia oxidation system of Massimilla and Johnstone is essentially a reaction-
limited system. The conversion and catalyst weight are related by 
 

  
    
W = Achρc 1− εmf( )1− δ( )=

A cubρc 1 − εmf( )1 − δ( )
kcatKR

ln
1

1− X
 (R12.3-63) 

Substituting for KR, 

  
  

W =
Acρcubδ

kcat
ln

1
1 − X

⎛ 
⎝ 

⎞ 
⎠  (R12.3-64) 

Recalling Equation (R12.3-23), 

  
  
δ =

uo − umf

ub − umf 1+ α( )  (R12.3-23) 

In almost all instances, ub is significantly greater than umf (1+α) so that Equation 
(R12.3-45) is approximately 

  δ =
u0 − umf

ub
 (R12.3-65) 

Combining Equations (R12.3-64) and (R12.3-65) gives 

  
  
W =

Acρc uo − umf( )
kcat

ln
1

1 − X
 (R12.3-66) 

Therefore one observes that to reduce the catalyst weight for a specified conversion, 
u0 and umf should be as close as possible. One can now ask in what ways the catalyst 
weight may be reduced for a specified conversion. The answer to this question is the 

Approximate 
catalyst weight 

for slow 
reactions 

“What if . . .” 
questions 
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same as to the question, “How may one increase the conversion for a fixed catalyst 
weight?” 
 

Example R12-4 Effect of Particle Size on Catalyst Weight for a Slow Reaction 

 Suppose you are operating at five times the minimum fluidization velocity, 
u0 = 5umf. What would be the effect of doubling the particle diameter on the 
catalyst weight for the same throughput and conversion? 
 
Solution 

Substitution for u0, into Equation (R12.3-66) gives 

 Case 1 

  
  
W1 =

Acρc 4umf 1

kcat1
ln

1
1− X1

 (RE12-7.1) 

 Case 2 

  
  
W2 =

ρcAc uo2 − umf 2( )
kcat2

ln
1

1 − X 2
 (RE12-7.2) 

Since the temperature remains constant and there are no inter- and intra-particle 
resistances, kcat1 = kcat2, the throughput (u01 = u02), and conversion (X1 = X2) are the 
same for Cases 1 and 2. The ratio of Equation (E4-1) and (E4-2) yields 
 

  
  

W2
W1

=
uo1 − umf 2

4umf 1
=

5umf1 − umf 2

4umf 1
 (RE12-7.3) 

Recalling Equation (R12.3-5), 

  

   

umf =
ψdp( )2
150µ

g ρc − ρg( )[ ]
η

1 2 4 3 4 

εmf
3

1 − εmf
 (R12.3-5) 

and neglecting the dependence of εmf on dp we see that the only parameters that 
vary between Case 1 (dp) and Case 2 (dp2 = 2dp1) are umf and W. Taking the ratio of 
umf2 to umf1 and substituting for dp2 in terms of dp1 we obtain 
 

  
  

umf 2

umf 1
=

dp2

dp1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

=
2dp1

dp1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

= 4  (RE12-7.4) 

and therefore 

  
  

W2
W1

=
5umf 1 − 4umf 1

4umf 1
= 0.25  (RE12-7.5) 
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Thus in the situation we have postulated, with a first-order reaction and reaction 
limiting the bed behavior, doubling the particle size will reduce the catalyst by 
approximately 75% and still maintain the same conversion. 
 

R12.3.6B The Rapid Reaction 

 To analyze this limiting situation, we shall assume the particles are 
sufficiently small so that the effectiveness factor is essentially one and that the rate of 
transfer from the bulk fluid to the individual catalyst particles is rapid in 
comparison with the rate of transfer between the fluidization phases. For the case of 
rapid reaction, 
 

  
  

kcat
Kbc

 and 
kcat
Kce

>> 1  

Using these approximations in the equation for KR, which is 

  

    

KR = γb +
1

kcat
Kcb

+
1

γc + 1
kcat
Kce

+
1
γ e

 

one observes the first term to be neglected is γb, and we also note that because the 
reaction is rapid kcat Kce  is a large number. 

  

    

KR =
1

kcat
Kce

+
1

γc + 1

Large No.( )+
1
γ e

 

Then neglecting the reciprocal of γe with respect to kcat/Kcb, KR becomes 

  

    

KR = γb +
1

kcat
Kcb

+
1
γc

≈ γb +
Kcb
kcat

 (R12.3-67) 

There are two situations one can analyze here 

Situation 1: 

  
γ b <<

Kbc
kcat

 Resistance to transport small wrt 
resistance to reaction inside the bubble 

   
Situation 2: 

  
γ b >>

Kbc
kcat

 Resistance to transport large wrt 
resistance to reaction inside the bubble 
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Only situation 1 will be analyzed in the text; the analysis of situation 2 is left as an 
exercise. 
 Assuming very few particles are present in the bubble phase 

  
 
KR ≅

Kbc
kcat

 (R12.3-68) 

The catalyst weight is given by combining Equations (R12.3-54) and (R12.3-68) 

  
    
W =

Acubρc 1 − δ( ) 1 − εmf( )
Kbc

ln
1

1 − X
⎛ 
⎝ 

⎞ 
⎠  (R12.3-69) 

Neglecting δ with respect to 1 in the numerator 

  
    
W =

Acubρp 1 − εmf( )
kcatKbc

ln
1

1− X
⎛ 
⎝ 

⎞ 
⎠  (R12.3-70) 

On observing that the equation for Kbc, Equation (R12.3-30), is the sum of two terms 
A0 and B0 

  
    
Kbc = 4.5

umf

db

⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟ + 5.85

DAB
1 2  g1 4

db
5 4

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  (R12.3-30) 

  Kbc = A0 + B0  

one finds the problem can be further divided. 

 Case A: A0 >> B0 

 Case B: B0 >> A0 

Only Case A will be considered here; Case B again will be left as an exercise. 
 For Case A 

  
  
Kbc ≅ 4.5

umf

db
 (R12.3-71) 

Then 

  
    
W =

ubdb
4.5umf

ρcAc 1 − εmf( )ln 1
1− X

⎛ 
⎝ 

⎞ 
⎠  (R12.3-72) 

Recalling the equation for ub and neglecting other terms in the equation with respect 
to the velocity of rise of a single bubble, that is, 
 

  ub ≈ ubr 
and 

Approximate 
catalyst rate for 
a rapid reaction 
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ubr = 0.71g1 2db
1 2

W =
0.71g1 2db

3 2

4.5umf
A cρc 1− εmf( )ln 1

1− X
⎛ 
⎝ 

⎞ 
⎠ 

 

  
    
W = 4.9

db
3 2

umf
Acρc 1 − εmf( )ln 1

1− X
⎛ 
⎝ 

⎞ 
⎠  (R12.3-73) 

 The average bubble diameter is a function of the tower diameter (thus the 
tower cross-sectional area Ac), height, u0, and umf. As a first approximation, we 
assume the average bubble diameter is some fraction, (say 0.75) of the maximum 
bubble diameter. 
  db = 0.75 dbm (R12.3-74) 

Then, from Equation (R12.3-16), we have 

  
    
dbm = 0.75( ) 0.652( ) A c uo − umf( )[ ]0.4

 (R12.3-75) 

which is substituted into Equation (R12.3-73) to give 

  
    
W = 1.69

Ac
1.6 uo − umf( )0.6

umf
ρc 1− εmf( )ln 1

1 − X
⎛ 
⎝ 

⎞ 
⎠  (R12.3-76) 

 

Example R12-5  Effect of Catalyst Weight on Particle Size for a Rapid Reaction 

 We again consider the effect of doubling particle size while keeping all other 
variables the same. Case 1:  dp1 = dp1, Case 2:  dp2 = 2 dp1. 
 
Solution 

 Using Equation (R12.3-76) and taking the ratio of Case 1 to Case 2 

  
W2

W1
=

u02 − umf 2( )0.6

u01 − umf 1( )0.6

umf 1

umf 2
 (RE12-6.1) 

Recalling from previous examples 

  
  

uo2 = uo1 = 5umf 1

umf 2 = 4umf 1
 

then 

  
    

W2
W1

=
5umf1 − 4umf1

5umf 1 − umf 1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

0.6
umf1

4umf1
=

1
4

⎛ 
⎝ 

⎞ 
⎠ 

0.6 1
4

 (RE12-6.2) 

or 

One 
Approximation 

for fast reactions 
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W2
W1

= 0.11  (RE12-6.3) 

 In this case, we see that doubling the particle diameter decreases the catalyst 
weight by 89% while maintaining the same conversion. However, for a fast 
reaction, a significant decrease in effectiveness factor could offset this advantage. 
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SUMMARY 

1. Minimum fluidization velocity 

  
  
umf =

ψdp( )2
η εmf

3

150 µ 1 − εmf( ) (S12.3-1) 

2. Porosity at minimum fluidization 

  
    
εmf =

0.586
ψ0.72

µ2

ρg ηdp
3

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

0.029
ρg

ρc

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 

0.021

 (S12.3-2) 

 or 

  
  
εmf =

0.415
ψ0.33  (S12.3-3) 

3. Bubble size 
    db = dbm − dbm − dbo( )e−0.3 h Dt  (S12.3-4) 
 where 

  
    
dbm = 0.652 Ac uo − umf( )[ ]0.4

, cm  (S12.3-5) 

 For porous plates 

  db 0 = 0.00376 uo − umf( )2
,  cm  (S12.3-6) 

4. Velocity of bubble rise 
  ub = u0 − umf + 0.71 gdb( )1 2  (S12.3-7) 

5. Bed height - conversion in first order reaction 

  
  
h =

ub
kcatKR

 ln  
1

1 − X
 (S12.3-8) 

  

    

KR = γb +
1

kcat
kbc

+
1

γc + 1
1
γ e

+
kcat
Kce

 (S12.3-9) 

6. Mass Transfer Parameters 

 a. Between the bubble and the cloud 

  
  
Kbc = 4.5

umf

db

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ + 5.85
D1 2 g1 4

db
5 4  (S12.3-10) 

 b. Between the cloud and the emulsion 
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Kce = 6.78

εmf  D ub

db
3

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 

1 2

 (S12.3-11) 

7. The reaction rate parameters 
   kcat = ρpk  (S12.3-12) 
 a. Bubble 
  0.001 < γb < 0.01 (S12.3-13) 
 b. Cloud 

  

    

γ c = 1 − εmf( )
3 umf εmf( )
ubr −

umf

εmf

+ α

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

 (S12.3-14) 

 c. Emulsion 

  
  
γ e = 1 − εmf( ) 1 − δ( )

δ
− γ c  (S12.3-15) 

  δ =
u0 − umf

ub − umf 1+α( )
 (S12.3-16) 

 where α is given by Figure 12.3-5. 

8. Procedure 

 See flow chart in Figure R12.3-9. 
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