#%% #Libraries import numpy as np from scipy.integrate import odeint import matplotlib.pyplot as plt import matplotlib matplotlib.rcParams.update({'font.size': 13}) from matplotlib.widgets import Slider, Button #%% t1=4 r=1 def ODEfun(Yfuncvec, t, t1, r): # A= Yfuncvec(1) # Explicit equations C1= 0.0038746 + 0.2739782*t + 1.574621*t**2 - 0.2550041*t**3 C2= -33.43818 + 37.18972*t - 11.58838*t**2 + 1.695303*t**3 - 0.1298667*t**4 + 0.005028*t**5 - 7.743e-5*t**6 C = np.where(t<=t1, C1, C2) dAdt=C*r # Differential equations return dAdt tspan = np.linspace(0, 14, 10000) y0 = 0 #%% fig, ax = plt.subplots() fig.suptitle("""LEP-16-1: Constructing the C(t) and E(t) curves""", x = 0.2, y=0.98, fontweight='bold') plt.subplots_adjust(left = 0.4) sol = odeint(ODEfun, y0, tspan,(t1,r)) A =sol[:, 0] p1=ax.plot(tspan, A)[0] plt.legend(["Area"], loc='best') ax.set_xlabel('Time (min)', fontsize='medium') ax.set_ylabel('Area', fontsize='medium') plt.ylim(0,55) plt.xlim(0,14) plt.grid() a=(sol[len(tspan)-1]) ax.text(-10.5, 10,'Differential Equations' '\n\n' r'$\dfrac{dA}{dt} = C$' '\n\n' 'Explicit Equations' '\n\n' r'$C_1= 0.0039 + 0.274t+ 1.57t^2 - 0.255t^3$' '\n\n' r'$C2= -33.4 + 37.2t- 11.6t^2 + 1.7t^3- 0.13t^4 + 0.005t^5- 7.7.10{^-5}t^6$' '\n\n' r'$C = If\hspace{0.5} (t<=t1) then\hspace{0.5} (C_1) \hspace{0.5}else\hspace{0.5} (C_2)$' '\n\n' r'$E = \dfrac{C}{A}$' '\n\n' 'Initial Area Under the Curve = %1.3f'%a , ha='left', wrap = True, fontsize=13, bbox=dict(facecolor='none', edgecolor='black', pad=10.0), fontweight='bold') axcolor = 'black' ax_t1 = plt.axes([0.1, 0.75, 0.15, 0.02], facecolor=axcolor) st1 = Slider(ax_t1, r'$t_1 (min)$', 0, 14, valinit= 4,valfmt='%1.1f') def update_plot(val): t1 = st1.val sol1 = odeint(ODEfun, y0, tspan,(t1,r)) p1.set_ydata(sol1[:,0]) st1.on_changed(update_plot) resetax = plt.axes([0.12, 0.8, 0.09, 0.03]) button = Button(resetax, 'Reset Variables', color='cornflowerblue', hovercolor='0.975') def reset(event): st1.reset() button.on_clicked(reset)