Lecture 9

Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they take place.

Lecture 9 - Thursday 2/7/2013

Balances in terms of molar flow rates

- Block 1: Mole Balances

Balance Equation on Every Species

- Block 2: Rate Laws

Relative Rates
Transport Laws

- Block 3: Stoichiometry
- Block 4: Combine

Membrane Reactors:
Used for thermodynamically limited reactions

Review Lecture 1

Reactor Mole Balances Summary

The GMBE applied to the four major reactor types (and the general reaction $A \rightarrow B$)
Reactor Differential Algebraic
Integral
Batch

$$
\frac{d N_{A}}{d t}=r_{A} V
$$

$$
t=\int_{N_{40}}^{N_{A}} \frac{d N_{A}}{r_{A} V}
$$

CSTR

$$
V=\frac{F_{A 0}-F_{A}}{-r_{A}}
$$

PFR

$$
\frac{d F_{A}}{d V}=r_{A}
$$

$$
V=\int_{F_{10}}^{F_{A}} \frac{d F_{A}}{d r_{A}}
$$

PBR

$$
\frac{d F_{A}}{d W}=r_{A}^{\prime}
$$

$$
W=\int_{F_{A 0}}^{F_{A}} \frac{d F_{A}}{r_{A}^{\prime}}
$$

Rate Law

Relative Rates

Stoichiometry

Pressure Drop

Combine
(1) Write mole balance on each species. ${ }^{\dagger}$
e.g., $\frac{d F_{\mathrm{A}}}{d V}=r_{\mathrm{A}}, \frac{d F_{\mathrm{B}}}{d V}=r_{\mathrm{B}}, \frac{d F_{\mathrm{C}}}{d V}=r_{\mathrm{C}}$
(2) Write rate law in terms of concentration.
e.g., $\quad-r_{\mathrm{A}}=k_{\mathrm{A}}\left(C_{\mathrm{A}} C_{\mathrm{B}}^{2}-\frac{C_{\mathrm{C}}}{K_{\mathrm{C}}}\right)$
(3) Relate the rates of reaction of each species to one another.

$$
\begin{gathered}
\frac{-r_{\mathrm{A}}}{1}=\frac{-r_{\mathrm{B}}}{2}=\frac{r_{\mathrm{C}}}{1} \\
\text { e.g., } r_{\mathrm{B}}=2 r_{\mathrm{A}}, r_{\mathrm{C}}=-r_{\mathrm{A}} .
\end{gathered}
$$

(4) (a) Write the concentrations in terms of molar flow rates for isothermal gas-phase reactions.

$$
\begin{aligned}
\text { e.g., } \quad C_{\mathrm{A}}= & C_{\mathrm{T} 0} \frac{F_{\mathrm{A}}}{F_{\mathrm{T}}} \frac{P}{P_{0}}, C_{\mathrm{B}}=C_{\mathrm{TO}} \frac{F_{\mathrm{B}}}{F_{\mathrm{T}}} \frac{P}{P_{0}} . \\
& \text { with } F_{\mathrm{T}}=F_{\mathrm{A}}+F_{\mathrm{B}}+F_{\mathrm{C}}
\end{aligned}
$$

(b) For liquid-phase reactions, use concentration, e.g., $C_{\mathrm{A}}, C_{\mathrm{B}}$
(5) Write the gas-phase pressure drop term in terms of molar flow rates.

$$
\frac{d p}{d W}=-\frac{\alpha}{2 p} \frac{F_{T}}{F_{T 0}} \quad \text { with } \quad \mathrm{p}=\frac{P}{P_{0}}
$$

(6) Use an ODE solver or a nonlinear equation solver (e.g., Polymath) to combine Steps (1) through (5) to solve for, for example, the profiles of molar flow rates, concentration, and pressure.
\dagger For PBR, use $\frac{d F_{\mathrm{A}}}{d W}=r_{\mathrm{A}}, \frac{d F_{\mathrm{B}}}{d W}=r_{\mathrm{B}}, \frac{d F_{\mathrm{C}}}{d W}=r_{\mathrm{C}}$.

Membrane Reactors

Membrane reactors can be used to achieve conversions greater than the original equilibrium value. These higher conversions are the result of Le Chatelier's principle; you can remove the reaction products and drive the reaction to the right.

To accomplish this, a membrane that is permeable to that reaction product, but impermeable to all other species, is placed around the reacting mixture.

Membrane Reactors

Dehydrogenation Reaction:
$\mathrm{C}_{3} \mathrm{H}_{8} \leftrightarrow \mathrm{H}_{2}+\mathrm{C}_{3} \mathrm{H}_{6} \quad \mathrm{~A} \leftrightarrow \mathrm{~B}+\mathrm{C}$
Thermodynamically Limited:
exothermic
$\xrightarrow{\sim}$

Membrane Reactors

Cross section of IMRCF

Cross section of CRM

Membrane Reactors

Schematic of IMRCF for mole balance

Membrane Reactors

$$
\begin{aligned}
& W=\rho_{b} V=\text { solids weight } \\
& \rho_{b}=(1-\phi) \rho_{C}=\text { bulk solids density } \\
& \rho_{C}=\text { density of solids }
\end{aligned}
$$

$\rho \downarrow b=$ volume solids/volume total $*$ mass of solids/volume solids

A,C stay behind since they are too big

Membrane Reactors

Mole Balance on Species A:

Species A:

$$
\begin{aligned}
& \text { In }- \text { out }+ \text { generation }=0 \\
& \left.F_{A}\right|_{V}-\left.F_{A}\right|_{V+\Delta V}+r_{A} \Delta V=0 \\
& \frac{d F_{A}}{d V}=r_{A}
\end{aligned}
$$

Membrane Reactors

Mole Balance on Species B:

Species B:

$$
\begin{aligned}
& \text { In - out - out membrane }+ \text { generation }=0 \\
& \left.F_{B}\right|_{V}-\left.F_{B}\right|_{V+\Delta V}-R_{B} \Delta V+r_{B} \Delta V=0 \\
& \frac{d F_{B}}{d V}=\left(r_{B}-R_{B}\right) \\
& R_{B}=\frac{\text { moles of B through sides }}{\text { volume of reactor }}
\end{aligned}
$$

Membrane Reactors

$$
W_{B}=k_{C}^{\prime}\left(C_{B}-C_{B S}\right)=\frac{\text { molar flow rate through membrane }}{\text { surface area of membrane }}\left[\frac{\mathrm{mol}}{\mathrm{~m}^{2} \cdot \mathrm{~s}}\right]
$$

$$
a=\frac{\text { membrane surface area }}{\text { reactor volume }}=\frac{\pi D L}{\frac{\pi D^{2}}{4} L}=\frac{4}{D} \quad\left[\frac{m^{2}}{m^{3}}\right]
$$

$$
R_{B}=W_{B} a=k_{C}^{\prime} a\left[C_{B}-C_{B S}\right]
$$

$$
k_{C}=k_{C}^{\prime} a
$$

$$
R_{B}=k_{C}\left[C_{B}-C_{B S}\right] \quad\left[\frac{\mathrm{mol}}{\mathrm{~m}^{3} \cdot \mathrm{~s}}\right]
$$

Neglected most of the time

Membrane Reactors

Mole Balances:

(1) $\frac{d F_{A}}{d V}=r_{A}$
(2) $\frac{d F_{B}}{d V}=r_{B}-R_{B}$
(3) $\frac{d F_{C}}{d V}=r_{C}$

Rate Law:

$$
\text { (4) } r_{A}=-k\left[C_{A}-\frac{C_{B} C_{C}}{K_{C}}\right]
$$

Membrane Reactors

Relative Rates: $\quad \frac{-r_{A}}{1}=\frac{r_{B}}{1}=\frac{r_{C}}{1}$
Net Rates:
(5) $r_{A}=-r_{B}, r_{A}=-r_{C}$

Transport Law:
(6) $R_{B}=k_{C} C_{B}$

Stoichiometry:
(7) $C_{A}=C_{T 0} \frac{F_{A}}{F_{T}} \quad$ (isothermal, isobaric)
(8) $C_{B}=C_{T 0} \frac{F_{B}}{F_{T}}$
(9) $C_{C}=C_{T 0} \frac{F_{C}}{F_{T}}$
(10) $F_{T}=F_{A}+F_{B}+F_{C}$

Parameters:

$$
C_{T O}=0.2, \quad F_{A 0}=5, k=4, K_{C}=0.0004, k_{C}=8
$$

Membrane Reactors

Example: The following reaction is to be carried out isothermally in a membrane reactor with no pressure drop. The membrane is permeable to product C, but impermeable to all other species.

$$
\begin{array}{lll}
& & \text { Inert Sweep Gas } \\
C_{6} H_{12} & \Leftrightarrow C_{6} H_{6}+3 H_{2} \\
A & \Leftrightarrow B+3 C
\end{array}
$$

For membrane reactors, we cannot use conversion. We have to work in terms of the molar flow rates $\mathrm{F}_{\mathrm{A}}, \mathrm{F}_{\mathrm{B}}, \mathrm{F}_{\mathrm{C}}$.

Membrane Reactors

Mole Balances

$$
\begin{aligned}
C_{6} H_{12} & \Leftrightarrow C_{6} H_{6}+3 H_{2} \\
A & \Leftrightarrow B+3 C
\end{aligned}
$$

$$
\frac{d F_{A}}{d W}=r_{A}^{\prime}
$$

$$
\frac{d F_{B}}{d W}=r_{B}^{\prime}
$$

$$
\frac{d F_{C}}{d W}=r_{C}^{\prime}-k_{C} C_{C}
$$

Inert Sweep Gas

Inert Sweep Gas

Membrane Reactors

Rate Law:

$$
-r_{A}^{\prime}=k_{A}\left[C_{A}-\frac{C_{B} C_{C}^{3}}{K_{C}}\right]
$$

Relative Rates:

$$
\frac{r_{A}^{\prime}}{-1}=\frac{r_{B}^{\prime}}{1}=\frac{r_{C}^{\prime}}{3}
$$

Net Rates:

$$
\begin{aligned}
& r_{B}^{\prime}=-r_{A}^{\prime} \\
& r_{C}^{\prime}=-3 r_{A}^{\prime}
\end{aligned}
$$

Membrane Reactors

Stoichiometry:

Isothermal, no Pressure Drop

$$
\begin{aligned}
& C_{T 0}=\frac{P_{0}}{R T_{0}} \\
& C_{A}=C_{T 0} \frac{F_{A}}{F_{T}} \\
& C_{B}=C_{T 0} \frac{F_{B}}{F_{T}} \\
& C_{C}=C_{T 0} \frac{F_{C}}{F_{T}} \\
& F_{T}=F_{A}+F_{B}+F_{C}
\end{aligned}
$$

Membrane Reactors

Combine: - Use Polymath

Parameters: $\quad C_{T 0}=0.2 \frac{\mathrm{~mol}}{\mathrm{dm}^{3}} \quad F_{A 0}=10 \frac{\mathrm{~mol}}{\mathrm{~s}}$

$$
k_{A}=10 \frac{\mathrm{dm}^{3}}{\mathrm{~kg} \mathrm{cat} \mathrm{~s}} \quad k_{C}=0.5 \frac{\mathrm{dm}^{3}}{\mathrm{~kg} \mathrm{cat} \mathrm{~s}}
$$

$$
K_{C}=200 \frac{\mathrm{~mol}^{2}}{d m^{6}}
$$

Membrane Reactors

End of Lecture 9

