Molecular Dynamics
 Abbreviated Notes

Part I

$$
\mathrm{A}+\mathrm{BC} \square \square \mathrm{AB}+\mathrm{C}
$$

Nonreactive Trajectory

Reactive Trajectory

To trace the trajectories we simply solve for R as a function of time

$$
\begin{gather*}
\mathrm{F}=\mathrm{ma}=\square \frac{\mathrm{dV}}{\mathrm{dt}}=\frac{\mathrm{d}(\mathrm{mV})}{\mathrm{dt}}=\frac{\mathrm{dP}}{\mathrm{dt}} \tag{1}\\
\mathrm{~K} . \mathrm{E} .=\frac{1}{2} \mathrm{mV}^{2}=\frac{1}{2 m} \mathrm{P}^{2} \tag{2}\\
\mathrm{~F}=\square \frac{\mathrm{d} \tilde{\mathrm{~V}}(\mathrm{x})}{\mathrm{dx}} \\
\tilde{\mathrm{~V}}\left(\mathrm{R}_{\mathrm{AB}}, \mathrm{R}_{\mathrm{AC}}, \mathrm{R}_{\mathrm{BC}}\right) \\
\tilde{\mathrm{V}}=\mathrm{D}_{\mathrm{AB}}\left[1 \square \mathrm{e}^{\square}\right] \text { See page } 10 \text { of notes. }
\end{gather*}
$$

Solution Procedure
Equating Equations (1) and (2)

$$
\frac{\mathrm{dP}_{\mathrm{x}}}{\mathrm{dt}}=\square \frac{\mathrm{d} \tilde{\mathrm{~V}}}{\mathrm{dx}}
$$

MolecularAbbreviated.doc

Integrating

$$
\begin{gathered}
\mathrm{P}_{\mathrm{x}}=\mathrm{P}_{\mathrm{xo}}+\square \square \frac{\mathrm{d} \tilde{\mathrm{~V}}}{\mathrm{dx}} \mathrm{dt}=\mathrm{P}_{\mathrm{xo}}+\square \frac{\mathrm{d} \tilde{\mathrm{~V}} \square}{\mathrm{dx}} \square \mathrm{t} \\
\mathrm{P}_{\mathrm{y}}=\mathrm{P}_{\mathrm{yo}}+\square \frac{\mathrm{d} \tilde{\mathrm{~V}} \square}{\mathrm{dy}} \mathrm{t} \\
\mathrm{P}_{\mathrm{z}}=\mathrm{P}_{\mathrm{zo}}+\frac{\square \square \frac{\mathrm{d} \tilde{\mathrm{~V}} \square}{\mathrm{dz}} \square \mathrm{t}}{\square \mathrm{dt}} \\
\frac{\mathrm{dx}}{\mathrm{~d}_{\mathrm{A}}} \\
\frac{1}{\mathrm{dt}} \mathrm{P}_{\mathrm{x}} \square \mathrm{x}=\mathrm{x}_{0}+\frac{1}{\mathrm{~m}_{\mathrm{A}}} \overline{\mathrm{P}}_{\mathrm{x}} \square \mathrm{t} \\
\frac{\mathrm{dz}}{\mathrm{~m}_{\mathrm{A}}} \mathrm{P}_{\mathrm{y}} \square \mathrm{y}=\mathrm{y}_{0}+\frac{1}{\mathrm{~m}_{\mathrm{A}}} \overline{\mathrm{P}}_{\mathrm{y}} \square \mathrm{t} \\
\mathrm{~m}_{\mathrm{A}} \\
\mathrm{P}_{\mathrm{z}} \square \mathrm{z}=\mathrm{z}_{0}+\frac{1}{\mathrm{~m}_{\mathrm{A}}} \mathrm{P}_{\mathrm{z}} \square \mathrm{t}
\end{gathered}
$$

$$
\begin{gathered}
\frac{\underbrace{z}}{\frac{\partial H}{\partial P_{x}}=\frac{1}{2 m_{A}} 2 P_{x}=\frac{P_{x}}{m_{A}}=\frac{m V}{m}=V=\frac{d x}{d t}} \\
\frac{d x}{d t}=\frac{\partial H}{\partial P_{x}}
\end{gathered}
$$

We can trace out a trajectory

We really don't care where we are in space, what we care about is location of molecules with regard to one another. Define a new coordinate system - affine transformation.

Carry Out Trajectory Calculations

The equations of motion used to calculate the trajectories in order to obtain the internuclear distances $\mathrm{R}_{\mathrm{AB}}, \mathrm{R}_{\mathrm{AC}}$, and R_{BC} are

$$
\begin{gathered}
\frac{\partial Q_{j}}{\partial t}=\frac{P_{j}}{\square} \\
\frac{\partial P_{j}}{\partial t}=\square \frac{\partial \tilde{V}\left(R_{B C}, R_{A B}\right)}{\partial Q_{j}}
\end{gathered}
$$

where P is the momentum and $\tilde{V}\left(R_{A B}, R_{B C}, R_{A C}\right)$ is the potential energy surface.

$$
\begin{aligned}
& \mathrm{Q}_{1}, \mathrm{Q}_{2}, \mathrm{Q}_{3}\{\text { Location of } \mathrm{C} \text { with } \mathrm{B} \text { as the origin. } \\
& \mathrm{Q}_{4}, \mathrm{Q}_{5}, \mathrm{Q}_{6}=\text { Location of A with the center of mass } \\
& H=\frac{1}{2 \square_{B C}} \square_{1}^{3} P_{i}^{2}+\frac{1}{2 \square_{A, B C}} \square_{4}^{6} P_{i}^{2}+\tilde{V}\left(R_{A B}, R_{B C}, R_{A C}\right) \\
& \frac{1}{\square_{B C}}=\frac{1}{m_{B}}+\frac{1}{m_{C}}, \frac{1}{\square_{A, B C}}=\frac{1}{m_{A}}+\frac{1}{m_{B}+m_{C}} \\
& i=1,2,3 \\
& \mathrm{i}=1,2,3 \\
& \mathrm{i}=4,5,6 \quad \frac{\partial \mathrm{Q}_{\mathrm{i}}}{\partial \mathrm{t}}=\frac{1}{\square_{\mathrm{A}, \mathrm{BC}}} \mathrm{P}_{\mathrm{i}} \\
& \frac{\partial \mathrm{Q}_{\mathrm{i}}}{\partial \mathrm{t}}=\frac{\partial \mathrm{H}}{\partial \mathrm{P}_{\mathrm{i}}}=\frac{1}{\square_{\mathrm{BC}}} \mathrm{P}_{\mathrm{i}} \\
& \mathrm{Q}_{\mathrm{i}}(\mathrm{t})=\mathrm{Q}_{\mathrm{io}}+\square \mathrm{P}_{\mathrm{i}} \mathrm{dt} \\
& \frac{\partial \mathrm{Q}_{\mathrm{j}}}{\partial \mathrm{t}}=\frac{\partial \mathrm{H}}{\partial \mathrm{P}_{\mathrm{i}}}=\frac{1}{\square_{\mathrm{BC}}} \mathrm{P}_{\mathrm{i}} \\
& \mathrm{Q}_{\mathrm{i}}(\mathrm{t})=\mathrm{Q}_{\mathrm{i}}(0)+\square \mathrm{P}_{\mathrm{i}} \mathrm{dt} \\
& \frac{\partial P_{i}}{\partial \mathrm{t}}=\square \frac{\partial \mathrm{V}}{\partial \mathrm{Q}_{\mathrm{i}}} \quad \mathrm{P}_{\mathrm{i}}(\mathrm{t})=\mathrm{P}_{\mathrm{io}}+\square \frac{\partial \mathrm{V}}{\partial \mathrm{Q}_{\mathrm{i}}} \square \mathrm{Gt}
\end{aligned}
$$

$$
\frac{d_{x}}{d t}=\square \frac{d \tilde{V}}{d x} \underbrace{d t}_{i=1}=\frac{1}{m_{A}} P_{x}
$$

MolecularAbbreviated.doc

We Specify Monte Carlo Chooses

b $\quad R$ - distance between B and $C\left(R_{-}<R<R_{+}\right)$
$\begin{array}{cl}\mathrm{U}_{\mathrm{R}} & \square \\ \mathrm{J} & \text { orientation of the } \mathrm{BC} \text { molecule to } \mathrm{A}(0<\square<\square, 0<\square<2 \square)\end{array}$
$\square \square$ angular momentum of BC , the direction the BC pair is turning
When \square rotates \square degrees the $\mathrm{H}-\mathrm{H}$ molecule, ie., (BC) is the same as it was $\square=0$. However, \square rotates the C molecule towards and away from T. A molecule, therefore it can rotate $2 \square$.

Initial conditions, A and the center of mass of $B C$ lie $x-y$ plane and A approaches along z axis.

For the with regard to $(\overline{\mathrm{B}})$

$$
\mathrm{Q}_{1}=\mathrm{R}_{\mathrm{BC}} \operatorname{Sin} \square \operatorname{Cos} \square
$$

$\mathrm{Q}_{2}=\mathrm{R}_{\mathrm{BC}} \operatorname{Sin} \square \operatorname{Sin} \square$
$Q_{3}=R_{B C} \operatorname{Cos} \square$
$\mathrm{P}_{1}=\mathrm{P}(\operatorname{Sin} \square \operatorname{Cos} \square+\operatorname{Cos} \square \operatorname{Cos} \square \operatorname{Sin} y)$
$P_{2}=P(\operatorname{Cos} \square \operatorname{Cos} \square-\operatorname{Cos} \square \operatorname{Sin} \square)$
$P_{3}=P \operatorname{Sin} \square \operatorname{Sin} \square$
$P=\sqrt{J(J+1)} h / R_{+} \quad\left(R_{+}\right.$is the out turning radius)
$\mathrm{P}_{4}=0$
$\mathrm{P}_{5}=0$
$P_{6}=\square_{A, B C} U_{R}$
For with regard to the center of the mass of $B C$

$$
\begin{aligned}
& Q_{4}=0 \\
& Q_{5}=b \\
& Q_{6}=\square\left(r_{o}^{2} \square b^{2}\right)^{1 / 2}
\end{aligned}
$$

Let's begin to calculate the trajectories to find to whether or not we will have a reaction.

$$
\text { Set } b=0 \quad V_{R}=1.1710^{6} \mathrm{~cm} / \mathrm{s} \quad J=0, \square=0
$$

(B)

Reaction

Now count up the number of reactions and the number of trials

Now set $b=0.5$ and again count $u p$ the number of reactions and trials to find P_{r} at this value of b.

Now let's calculate the reaction cross section

The differential reaction cross section is

$$
\mathrm{dS}_{\mathrm{r}}=\mathrm{P}_{\mathrm{r}}(\mathrm{~b}, \mathrm{U}, \mathrm{~J}, \square) 2 \square \mathrm{bdb}
$$

integrating

$$
\mathrm{S}_{\mathrm{r}}=\square^{\mathrm{d}^{\max }} \mathrm{P}_{\mathrm{r}}(\mathrm{~b}, \mathrm{U}, \mathrm{~J}, \square) 2 \square \mathrm{bdb}
$$

If we approximate $\operatorname{Pr}=\mathrm{a} \cos \stackrel{\square \mathrm{b}}{\square \mathrm{b}_{\max }}[$
then

$$
\mathrm{S}_{\mathrm{r}}=\left(\mathrm{U}_{\mathrm{r}}, \mathrm{~J}, \mathrm{\square}\right)=1.45 \mathrm{a}_{\text {max }}^{2}(\mathrm{a} . \mathrm{u})^{2}
$$

Now increase U_{R} to $U=1.95 \square 10^{6} \mathrm{~cm} / \mathrm{s}$. We find both " $\mathrm{b}_{\max }$ " and "a" both increase

Now plot the reaction cross sections as a function of velocity and energy

The threshold kinetic energy, E_{T}, below which no reaction will occur for $\mathrm{D}=0$ and $\mathrm{J}=0$ is 5.69 kcal

Let's compare S_{r} versus E from Molecular Dynamics (MD) with that obtained from collision theory

$$
\begin{aligned}
& \text { Rigid sphere } S_{\mathrm{R}}=\square \mathrm{b}_{\text {max }}^{2}, \mathrm{E}>\mathrm{E}_{\mathrm{A}} \\
& \begin{array}{l}
\text { L. Trajector calculations } \mathrm{E}>\mathrm{E}_{\mathrm{A}} \\
\overrightarrow{\mathrm{~V}}_{\mathrm{R}}=\overrightarrow{\mathrm{V}}_{\mathrm{A}} \square \overrightarrow{\mathrm{~V}}_{\mathrm{BC}} \\
\mathrm{U}_{\mathrm{R}}=\mathrm{V}_{\mathrm{A}} \square \mathrm{~V}_{\mathrm{BC}}
\end{array} \\
& \text { Line of centers } \mathrm{E}>\mathrm{E}_{\mathrm{A}}
\end{aligned}
$$

From Collision Theory we had

$$
\square \mathrm{r}_{\mathrm{A}}=\underbrace{\square \mathrm{S}_{\mathrm{r}} \mathrm{Uf}(\mathrm{U}) \mathrm{dU} \mathrm{C}_{\mathrm{A}} \mathrm{C}_{\mathrm{BC}}}_{\mathrm{k}}
$$

by analogy we have

$$
\square \mathrm{r}_{\mathrm{A}}(\square, \mathrm{~J})=\underbrace{\boldsymbol{F}_{\mathrm{BC}}(\mathrm{~J}, \square) \mathrm{C}^{0} \square \mathrm{U}_{\mathrm{r}} \mathrm{~S}_{\mathrm{r}}\left(\square, \mathrm{~J}, \mathrm{U}_{\mathrm{r}}\right) \mathrm{f}_{\mathrm{A}} \mathrm{dV}_{\mathrm{A}} \mathrm{f}_{\mathrm{BC}} \mathrm{dV}_{\mathrm{BC}}}_{\mathrm{k}(\square, \mathrm{~J})} \underbrace{}_{\mathrm{A}} \mathrm{C}_{\mathrm{BC}}
$$

where $F_{B C}(\square, J)$ is fraction of $B C$ molecules in rotation state, J, and vibration state \square.

$$
\square \mathrm{r}_{\mathrm{A}}(\square, \mathrm{~J})=\mathrm{k}(\square, \mathrm{~J}) \mathrm{C}_{\mathrm{A}} \mathrm{C}_{\mathrm{BC}}
$$

The total reaction rate is found by summing over all quantum states \square and J .

$$
\square \mathrm{r}_{\mathrm{A}}=\underset{\substack{\square \\ \mathrm{D}}}{\mathrm{k}(\square, \mathrm{~J}) \mathrm{C}_{\mathrm{A}} \mathrm{C}_{\mathrm{BC}}=\mathrm{kC}_{\mathrm{A}} \mathrm{C}_{\mathrm{BC}}}
$$

From first principles we evaluate all the parameters to calculate k at 300 K and 1000 K to compare with experimental observation.

$$
\mathrm{k}\left(\mathrm{~cm}^{2} / \mathrm{mol} \cdot \mathrm{~s}\right)
$$

Temperature
300
1000

Theory 0.00185
11.5

Exp
$0.0017 \square 0.006$
$11 \square 22$

From the Arrhenius equation we know

$$
\begin{gathered}
\mathrm{k}=\mathrm{Ae}^{\square \mathrm{E} / \mathrm{RT}} \\
\ln \mathrm{k}=\ln \mathrm{A} \square \square_{\square}^{\square \mathrm{E}} \square \frac{1}{\square \mathrm{~T}}
\end{gathered}
$$

Plotting $(\ln \mathrm{k})$ as a function of $(1 / \mathrm{T})$ we find the activation energy to be $\mathrm{T} .4 \mathrm{kcal} / \mathrm{mole}$.

Comparison of Energies

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{V}}+\mathrm{E}_{\mathrm{T}}=6.2+5.89=11.89 \mathrm{kcal} \\
& \mathrm{E}_{\mathrm{B}}=9.13 \mathrm{kcal} \\
& \mathrm{E}_{\mathrm{A}}=7.4 \mathrm{kcal} \\
& \mathrm{E}_{\mathrm{T}}=5.69 \mathrm{kcal} \\
& \mathrm{E}_{\mathrm{R}}=5.35 \mathrm{kcal} \quad \mathrm{~J}=5 \\
& \mathrm{E}_{\mathrm{R}}=0.35 \mathrm{kcal} \quad \mathrm{~J}=1
\end{aligned}
$$

