Calculation of Pressure drop parameter for flow conditions given in Example 5-4

The pressure drop parameter is given by

$$\alpha_p = \frac{4 f G^2}{A_c \rho_0 P_0 D} \tag{1}$$

From example 5-4, the parameter values are

$$G = 7383.3 \frac{lb_m}{h.ft^2}$$

$$A_c = 0.01414 ft^2$$

$$\rho_0 = 0.413 \; \frac{lb_m}{ft^3}$$

$$D = 0.0208 ft$$

$$\mu = 0.0673 \; \frac{lb_m}{h.ft}$$

$$P_0 = 10 \ atm = 8.823 * 10^{12} \frac{lb_m}{ft.h^2}$$

$$(1 atm = 2116.22 lbf/ft^2, 1 lbf = 32.174 \frac{lb_m ft}{s^2}, 1 s = \frac{1}{3600} h)$$

To determine the value of fanning friction factor, f , we need to calculate Reynold number, which is given by

$$R_e = \frac{\rho_0 \, v \, D}{\mu} \tag{2}$$

In the above equation v is the velocity which can be calculated from the given volumetric flow rate i.e. $v_0=252.8\,ft^3/h$

Velocity is calculated as

$$v = \frac{v_0}{A_c} = \frac{252.8}{0.01414} = 17878 \, ft/h$$

Substituting the values of $ho_{0,}$ v, D, and μ in Equation 2

$$R_e = \frac{0.413 * 17878 * 0.0208}{0.0673} = 2282$$

Since the Reynold number is very close to 2000, the flow regime can be considered as laminar flow

For laminar flow,

$$f = \frac{16}{R_e} = \frac{16}{2282} = 0.007$$

Substituting the values of f, G, A_c , ρ_0 , P_0 , and D in Equation 1 we obtain

$$\alpha_p = 0.00143 \, ft^{-3}$$

Or,

$$\alpha_p = 0.05 \ m^{-3}$$

Let's consider a pipe length (l) of 1,000 ft

The volume of pipe is

$$V = A_c * l = 14.14 \, ft^3$$

Now,

$$p = \left(1 - \alpha_p V\right)^{1/2}$$

Or,

$$p = (1 - 0.00143 * 14.14)^{\frac{1}{2}}$$
$$p = (1 - 0.012)^{\frac{1}{2}}$$

Or,

$$p = 0.99$$

Thus, the pressure drop is approximately 1 % of the original pressure