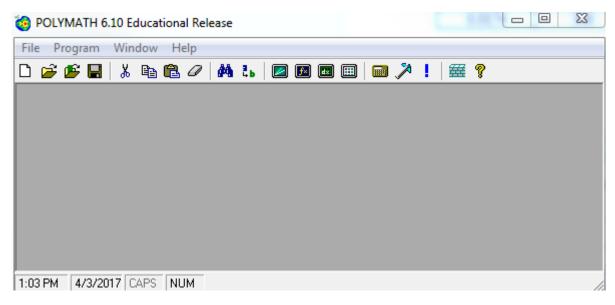
Polymath tutorial to find the Rate-Law parameters (Example 7-3)

The following table shows the raw data for performing nonlinear regression to determine model parameters (refer Table E7-1.1, Elements of chemical reaction engineering, 5th edition)

$C_A(mol/dm^3)$	<i>t</i> (min)
0.05	0
0.038	50
0.0306	100
0.0256	150
0.0222	200
0.0195	250
0.0174	300


The nonlinear equation is given by

$$t = \frac{1}{k'} \frac{(0.05)^{(1-\alpha)} - C_A^{(1-\alpha)}}{(1-\alpha)}$$

Perform first regression to obtain the value of k' and α and then round off α value to nearest integer. Perform second regression to determine the value of k', keeping the value of α constant (as obtained from first regression).

Step 1: First make sure you have polymath installed. If you don't have it then refer to the installation instruction present on <u>http://www.umich.edu/~elements/5e/software/polymath.html</u>

When you open Polymath, following window would appear

Step 2: To use the nonlinear regression solver in Polymath, first click on the "Program" tab present on the toolbar and select "REG Regression". The shortcut button for nonlinear equation solver is also present on the menu bar as shown by red circle in below screenshot

_	(MATH 6.10 Educational Release rogram Window Help	
<u> </u>) 🗃 🎾 ! 🦉
1:04 PM	4/3/2017 CAPS NUM	

This will open up another window, which looks like this.

🍓 POLYI	MATH 6.10) Educational	Release - [Da	ita Table]		
🛄 File	Program	n Edit Rov	w Column	Format Analysis	s Examples	Window Help _ 문 ×
🗅 🧭 (🖻 🔚	እ 🖻 💼	Ø 👫 ち	🗾 🔝 💷	🔜 🌂 !	🧱 📍
R001 : C	001 C01	×	< 🗸 📃		÷	Regres <u>s</u> ion A <u>n</u> alysis <u>G</u> raph
	C01	C02	C03	C04	C05	🕇 🗘 🗷 🔿 🔽 Graph 🗆 Residuals
01						
02						I Report □ Store Model
03						Linear & Polynomial Multiple linear Nonlinear
04						
05						Dependent Variable
00						Independent Variable
08						Polynomial Degree
09						
10						
11						
12						
13						Through origin
14						
15						Polynomial Integration
16						-
17						
19						Derivative
13						-
					•	
No File		No Title				
1:06 PM	4/3/2017	CAPS NU	м			

Step 3: Before inserting the data into the spreadsheet, it is recommended to change the column name with the name of the variable mentioned in the data table. This would make it easy to comprehend the polymath output. To change the column name of C01, double click on the column name "C01" or right click on C01 and select "Column Name…" A dialog box will appear where column name can be changed

S POLYMATH 6.10 Professional Release - [Data Table]	
Ele Brogram Edit Bow Column Format Analysis Examples Window Help	_ 8 X
▷ 🖉 🖉 🖟 № № 0 🖊 № 🙋 🖾 🖾 🖾 🖾 💭 💭 📜 🕮 ?	
R001: C001 C01 X V Regression Analysis Graph	
C01 C02 C03 C04 C05 C06 - ♥ 🗷 ♦ F Grach F R	ecidual:
01	
02 Polymath Table Column Name Store Model	
03 Enter column name: OK monial Multiple linear Nonlin	ear
04	
05 Cancel Variable	•
06 ent Variable	•
07	
00	
09	
10	
11	
12 13	
14 15 Polynomial	
Integration	
16 17	
Desiration - Desiration	
No File No Title	
13:24 12:02:2017 CAPS NUM	

Change the column name from C01 to Ca and click Ok. You will find that 1st column name is changed to Ca

🤞 PC	DLYMATH 6.1	0 Educational	Release - [Dat	ta Table]	
🛄 F	ile Program	n Edit Row	Column	Format Analys	is Examples Window Help 💶 🖅 🗙
	ž 🗲 🖬	እ 🖻 🛍 ሪ	2 🚧 ち	🗾 🖪 🖪 🖽] 🖬 🎾 ! 🚟 ?
R001	: C001 Ca	×		÷	Regression Analysis Graph
	Са	C02	C03	C04 _	🕇 🗘 🗷 🔿 🗖 Graph 🗖 Residuals
01				-	
02					✓ <u>R</u> eport Store Model
03					Linear & Polynomial Multiple linear Nonlinear
04					
05					Dependent Variable
06					
07					Independent Variable
08					Polynomial Degree
•]			▶	
No Fil	e	No Title			
1:11 F	M 4/3/201	CAPS NUM	1		
<u> </u>	,	, ,			

🍓 PC	LYMATH 6.1	0 Educational	Release - [Da	ta Table]	Ind Stellar	
E F	ile Program	n Edit Row	Column	Format Analys	is Examples Window H	lelp _ & ×
	ž 🖻 🖬	ኤ 🖻 🛍 ሪ	2 🐴 ち	🗾 🖪 💷) 📾 🌂 ! 🛙 🚟 💡	
R001	: C002 t	×		÷	Regression Analysis	<u>G</u> raph
	Са	t	C03	C04 _	\$ ⊠ ⇒	🔲 <u>G</u> raph 🔲 Residu <u>a</u> ls
01					□	
02						
03					Linear & Polynomial Multip	ole linear Nonlinear
04						
05					Dependent Variable	•
06						
07					Independent Variable	
08					Polynomial Degree	
•				Þ		
No Fil	8	No Title		Ľ.		
1:12 F	M 4/3/201	7 CAPS NUM				1.

Similarly, rename C02 to t as shown below

Step 4: For using nonlinear regression solver, click on the Regression tab on the right side of the window, and select the "Nonlinear" regression tab under the "Report" and "Store Model" check boxes. The window should look like this:

🧐 POLYN	AATH 6.10	0 Educat	tional R	elease - (D	ata Table)			1	
🔲 File	Program	n Edit	Row	Column	Format	Analysis	Examples	Window Help	_ 8 ×
D 🥩 🕯	ê 🔒 🕴	X 🗈	6 0	M &			🖃 🎢 !	<u> </u>	
R001:C	002 t		×	1			4	Regression Dratysis	s <u>G</u> raph
	Ca	t		C03	0	•	C05 🔺	\$ ⊠ ♦	🗆 Graph 🔲 Residuals
01							_	Beport E Store Mr	
02									
03								Linear & Polynomial Mu	tiple linear Nonlinear
04								Model	
06								model	
07									
08									
09								Model Parameters Initial	e.g. y = 2*x*A+B Guess:
10									
11									
12									
13									
14									
15									
16									
17									
18									
20								Dependent Variable	unknown
20								Independent Variable/s	unknown
22								Model Variable/s	unknown
22							•	Available Variables	unknown
<u> </u>							•		
No File		No Title							
1:13 PM	4/3/2017	CAPS	NUM						10

Step 5: To input the data for Ca, select the first cell (row 01, column Ca) and enter the first data as shown below:

🍓 PO	LYMATH 6.1	0 Educational	Release - [Dat	a Table]				
🛄 F	ile Progran	n Edit Row	Column	Format Ana	ysis Exampl	es	Window Help	_ & ×
D 🞽	š 🖻 🔚	🖻 🛍 ሬ	2 🚧 🕹	🗾 🌆 🔜	🎟 🖬 🌂	1	鑼 🤋	
R001	: C001 Ca	×	✓ 0.05		4	₽	Regression Analysis Graph	
	Са	t	C03	C04	C05	-	🗘 🛛 🔁 🔶 🗖 Graph	n 🗖 Residu <u>a</u> ls
01	0.05							_
02							Report Store Model	
03							Linear & Polynomial Multiple linear	Nonlinear
04							£19/	· · · · · · · · · · · · · · · · · · ·
05							Model:	
06								
07								
08								e.g. y = 2*x^A+B
np						_	Model Parameters Initial Guess:	0.g. y - 2 x A D
빌					•			
No File	9	No Title						
1:15 P	M 4/3/2017	CAPS NUM	1					1.

Similarly, enter the remaining data of Ca in subsequent rows. Repeat this procedure to input the data for t. After entering the data, the spreadsheet would look like this:

🧑 P	OLYMATH 6.1	0 Educational	Release - [Da	ta Table]			
	File Program	n Edit Row	Column	Format Ana	lysis Examples	Window Help	_ 8 ×
D	🎽 🖉 🎽	እ 🖻 🛍 ሪ	2 🚧 🕹	🗾 🖪 💷	📖 🏳 !	🇱 🦻	
R00	7 : C002 t	×	✓ 300		÷	Regression Analysis Graph	
	Са	t	C03	C04	C05 🔺	💠 🔟 🔿 🗆 Graph	🔲 Residu <u>a</u> ls
01	0.05	0					
02	0.038	50				✓ <u>R</u> eport	
03	0.0306	100				Linear & Polynomial Multiple linear	Nonlinear
04	0.0256	150					· · · · · · · · · · · · · · · · · · ·
05	0.0222	200				Model:	<u> </u>
06	0.0195	250					
07	0.0174	300					
08							e.g. y = 2*x^A+B
09						Model Parameters Initial Guess:	
10							
11							
12							
13							
11	1				•		
		N				_	
No F		No Title					
1:16	PM 4/3/2017	CAPS NUM					

First Regression

Step 6: Now, you need to input the model form you wish your equation to match. In this case, the form is $t = (0.05^{(1-a)}-Ca^{(1-a)})/(k^{*}(1-a)))$, where Ca and t are columns in the data table that we are using. a and k are the model parameters which you need to fit

To input the model, place the cursor in the rectangular box below "Model:" and type the equation as shown in the below screen shot.

🛄 Fil	le Progran	n I	Edit R	low	Colu	mn	Form	nat	Anal	ysis	Exa	mple	S	Window Help _ B >
D 🦻	🗲 🔲	Ж	Ba 🛱	0	d d	Зь		<u>f</u> *	dx			×	ł.	🚟 🦻
R007 :	C002 t			×、	/ 300)						÷	. (Regression Analysis Graph
	Ca		t		C	3		C04			C05	-	▲	🗘 🗵 🔿 🗖 Graph 🗖 Residuals
01	0.05			0								_		
02	0.038			50										Report Store Model
03	0.0306		1	100										Linear & Polynomial Multiple linear Nonlinear
04	0.0256		1	150										Model f
05	0.0222		2	200										
06	0.0195		2	250										t=(0.05^(1-a)-Ca^(1-a))/(k*(1-a))
07	0.0174		3	300										
08														e.g. y = 2*x^A+B
09														Model Parameters Initial Guess:
10														Model parm Initial guess
11														a
12														k
13														
14														
15														
16														
17 18														
18														
19 20														Dependent Variable t
20													•	Independent Variable/s Ca
< <u> </u>												Þ		Model Variable/s a, k
No File		No	Title											

Step 7: Next we need to select an appropriate regression analysis routine. To select, click on the drop down menu present over the top right of the rectangular box as shown and select the regression method. In this case, choose "L-M" as regression method

🍓 PO	LYMATH 6.1	0 Educa	tional Re	lease -	(Data Ta	ble]					10	- 0 ×
🖽 F	ile Prograr	n Edit	Row	Colum	n Forn	nat	Analysi	s Exa	mples	١	Window Help	_ 8 ×
) 💕 🖉	ኤ 🗈	🛍 🖉	44	L 🛛 🗖		a		1		🗱 🥊	
R007	: C002 t		× -	300							Regression Analysis Graph	
	Ca	t		C03		C04		C05	1		🔹 🔳 🔶 🗆 Graph	🗖 Residuals
01	0.05		0							1) nesidugis
02	0.038		50							1	Beport Store Model	
03	0.0306		100								Linear & Polynomial Multiple linear	Nonlinear
04	0.0256		150								Model Ft	ILM V
05	0.0222		200									mrqmin
06	0.0195		250								t=(0.05^(1-a)-Ca^(1-a))/(k*(1-a))	L-M
07	0.0174		300								I	\smile
08												e.g. y = 2*x^A+B
10											Model Parameters Initial Guess:	
11											Model parm Initial guess	
12											a k	
13											K IIIII	
14												
15												
16												
17												
18												
19											Dependent Variable t	
20											Independent Variable/s Ca	
21										1	Model Variable/s a, k	
		No The							•	-	-	
No File		No Title	-									
1:21 P	M 4/3/201	CAPS	NUM									//

Step 8: Next, you need to provide initial guesses for the parameters in your model, in this case, a and k (Note: The solution Polymath provides may be very sensitive to the initial value guesses, so if the first regression solution is not very good, you may want to change the initial guesses and rerun the regression).

Let's put 2 as initial guess for a and 0.1 as initial guess for k. To input the initial guess, select the cell corresponding to each parameter under section "Model Parameters Initial Guess" and then enter the guess value

🗉 File	Program	n Edi	t Row	Colu	mn	Form	at	Anal	ysis	Exa	mples	۷	Vindow Help		- 8
) 🦻	🗩 🔒	ኤ 🖻	6 🚨 🖌	2 M	Зъ		<u>5</u>	-	Ħ		1		錣 💡		
R007 : (C002 t		×	 300 							4	1	Regression Analysis	Graph	
	Ca		t	CO			C04			C05	-	1	¢ 🛛 🔶	-	
01	0.05		0					_						<u>G</u> raph	🗆 Residuals
02	0.038		50									ſ	Beport Store Mog	jel	
03	0.0306		100										Linear & Polynomial Multi	nle linear	Nonlinear
04	0.0256		150												
05	0.0222		200										Model 🖉		L-M 💌
06	0.0195		250										t=(0.05^(1-a)-Ca^(1-a))/(k	"(1-a))	
07	0.0174		300												
08															e.g. y = 2*x^A
09												Г	Model Parameters Initial G	uess:	0.g. y - 2 A A
10												1	Model parm Initial guess		
11												T	a 2		
12												1	k 0.1		
13												5			
14															
15															
16															
17															
18															
19													Dependent Variable	,	
20													Independent Variable/s	-	
21														a, k	
22															
i l											۰Ť		Available Variables	t, Ca	
lo File		No Titl									-	-			

Now select what you want polymath to output by checking the boxes on the upper right side of the window. The options are Graph, Residuals, Report, and Store Model. Click on the pink arrow \Rightarrow to have Polymath perform the regression.

Step 9: If you checked the box for "Report" you will see a screen like this that details the statistics from the regression analysis. The R^2 value obtained is 0.999 which indicates a very good fit

	dit Wind	_		_		-	-	_		_		_	_	_			- 6
i 🖉 🖉	📕 👗	De 6	0	М	29 (2 🖪			<u>></u>	1	靈	?					
	ATH Repo	rt															
	Regression (03-	Apr-2	017
Model: t	= (0.05^((1-a)-(Ca^(1-	a))/(I	(*(1-a))											
Variable	e Initial g	uess	Value		95%	conf	iden										
а	2.							ce									
			2.0447	2	0.031	7028		œ									
Nonlinea Max # ite Precision	0.1 r regress rations = n	64	0.1467	7193													
Nonlinea Max # ite Precision	0.1 r regress rations =	64	0.1467	7193													
Max # ite Precision R^2	0.1 r regress rations = n	64 .7	0.1467	7193													
Nonlinea Max # ite Precision R^2	0.1 erations = 0.999971	64 17 5	0.1467	7193													
Nonlinea Max # ite Precision R^2 R^2adj Rmsd	0.1 r regress rations = 0.999971 0.999966	64 17 5	0.1467	7193													
Nonlinea Max # ite Precision R^2 R^2adj Rmsd Variance	0.1 r regress rations = 0.999971 0.999966 0.201160 0.396561	64 17 5	0.1467	7193													
Nonlinea Max # ite Precision R^2 R^2adj Rmsd Variance General	0.1 r regress rations = 0.999971 0.999966 0.201160 0.396561	64 17 5	0.1467	7193													
Nonlinea Max # ite Precision R^2 R^2adj Rmsd Variance General Sample s	0.1 regress rations = 0.999971 0.999966 0.201160 0.396561 size 7	64 17 5	0.1467	7193													
Nonlinea Max # ite Precision R^2 R^2adj Rmsd Variance General Sample s Model va	0.1 r regress rations = 0.999971 0.999966 0.201160 0.396561 size 7 ars 2	64 17 5	0.1467	7193													
Nonlinea Max # ite Precision R^2 R^2adj Rmsd Variance General Sample s	0.1 r regress rations = 0.999971 0.999966 0.201160 0.396561 size 7 ars 2 rrs 1	64 17 5	0.1467	7193													

From the above report,

$$\alpha = 2.04$$

 $k' = 0.147$

The first regression gives $\alpha = 2.04$. Round off α to the value of 2. Now, we will do second regression to find k', keeping α fixed at 2

Second Regression

Step 10: Close the report window by clicking on X button as shown in above screenshot. This will take you to **Step 8.** Now, in the model equation replace parameter "a" by 2 as shown below. You will also find that parameter a is removed from the Initial guess box. Enter the initial guess of k as 0.1

🍓 PC	OLYMATH 6.10	Educat	ional Re	lease - [Da	ta Table]					
🛄 F	ile Program	Edit	Row	Column	Format	Analysis	Examples W	/indow I	Help	_ & ×
	ž 🕼 🖉 🧯	<u></u> Барана 🕺	r	#4 Es			📾 🏓 !	# ?		
R007	: C002 t		× -	300		\$	Regression	Analysis	s Graph	
	Ca	t		C03	C04	<u> </u>	¢ 🗷	(\Rightarrow)	<u> </u>	Residuals
01	0.05		0					<u> </u>		
02	0.038		50				I Report □	Store Mo	odel	
03	0.0306		100				Linear & Polyn	iomial Mul	tiple linear	Nonlinear
04	0.0256		150				Madah 👰	1		
05	0.0222		200				Moder			L-M 👻
06	0.0195		250				t=(0.05^(1.2)	Ca^(1-2))/(k*(1-2))	
07	0.0174		300							
08										e.g. y = 2*x^A+B
09							Model Parame	eters Initial (Guess:	
10							Model parm	Initial gues	s	
11							k	0.1		
12										
13										
14										
15										
16										
17										
18										
19							Dependent V	ariable	t	
20										
21						-	Independent			
1						•	Model Variab		k	
No Fil		No Title				<u> </u>	Available Var	iahles	h Cs	
2:09 F	M 4/3/2017	CAPS	NUM							11

Step 11: Click on the pink arrow	➡	to have Polymath perform the regression.

i 🖉 🖉	🔲 👗 🖻 🛍	204	1 to 🗷 🌆 💷 (🗏 🧰 🎽		7		
	TH Report egression (L-M)						03-Apr-201	17
Model: t =	= (0.05^(1-2)-	Ca^(1-2))/	/(k*(1-2))					
Variable	Initial guess	Value	95% confidence					
k	0.1	0.1253404	4 0.0007022	-				
Max # iter Precision		settings	·					
Max # iter P recision R^2	ations = 64	settings						
Max # iter Precision R^2 R^2adj Rmsd	ations = 64	settings						
Max # iter Precision R^2 R^2adj Rmsd Variance	ations = 64 0.9998978 0.9998978 0.3821581	settings						
Max # iter Precision R^2 R^2adj Rmsd Variance General	ations = 64 0.9998978 0.9998978 0.3821581 1.192699	settings						
Max # iter Precision R^2 R^2adj Rmsd Variance General Sample si	ations = 64 0.9998978 0.9998978 0.3821581 1.192699 ize 7	settings						
Max # iter Precision R^2 R^2adj Rmsd Variance General	ations = 64 0.9998978 0.9998978 0.3821581 1.192699 ize 7 rs 1	settings						

From the above report, the second regression gives

$$k' = 0.125$$