Tutorial to run LEP nonlinear regression code

Step 1: Open chapter 7 and click on LEP-7-3.pol to view Polymath code for Example 7-3

ources tes le Problems Reference	Living Example Problems The following examples can be accessed with Polymath [™]	nalysis of	Rate	Dala
ources ites le Problems Reference	Living Example Problems			
le Problems Reference	The following examples can be accessed with Polvmath™			
		, MATLAB™, or Wolfra	Im CDF Pla	iyer™.
/ Problems terial	Living Example Problem	Polymath™ Code	Matlab Code	Wolfran CDF Code *
HIDE		LEP-7-3.pol		
odules s omputer	Example 7-3 Use of Regression to Find the Rate Law Parameters	<u>(Nonlinear</u> Regression Tutorial)	<u>LEP-</u> <u>7-3.zip</u>	<u>LEP-7-</u> <u>3.cdf</u>
le Problems HIDE		(LEP Tutorial for nonlinear regression)		
Learning	Regression tool to fit experimental C(t) vs t data to			
	HIDE HIDE odules s omputer le Problems HIDE s Learning	Living Example Problem Iterial HIDE Example 7-3 Use of Regression to Find the Rate Law Parameters Example 7-3 Use of Regression to Find the Rate Law Parameters Regression tool to fit experimental C(t) vs t data to Polynomial equation of form C(t)=a0+a1 t+ a2 t^2 + a3* t^3+	Living Example Problem Polymath TM Code Polymath TM Code Polymath TM Code termination of the second s	Living Example Problem Polymath ^{IM} Code Code terial HIDE Example 7-3 Use of Regression to Find the Rate Law Parameters Living Example 7-3 Use of Regression to Find the Rate Law Parameters Living Example 7-3 Use of Regression to Find the Rate Law Parameters Living Example 7-3 Use of Regression to Find the Rate Law Parameters Living Example 7-3 Use of Regression to Find the Rate Law Parameters Living Example 7-3 Use of Regression to Find the Rate Law Parameters Living Example 7-3 Use of Regression to Find the Rate Law Parameters Code Code Code Code Code Code Code Code

Step 2: The following page will open. We will carry out regression for first part of the problem where you need to determine both a and k. Copy the data of t and Ca as shown below

\leftrightarrow	G	① umich.edu/~elements/5e/live/chapter07/LEP-7-3.pol		☆	:
#Examp	le 7-3	Use of Regression to Find Rate Law Parameters			
- Parc	a				
t	Ca				
100	0.03	8			
150	0.02	256			
200	0.0	Сору	Ctrl+C	h	
250	0.01	Search Georgia for "50.0.038, 100.0.0305, 150.0.0356, 200.0.0322, 250"		1	
200	0.01	Search Google for 30 0.050 100 0.0500 150 0.0250 200 0.0222 250		I .	
Model:		Print	Ctrl+P	I .	
t = ((.05^(1	largest	Chill Shift I	1	
Guess	/alue:	Inspect	Ctri+Snitt+1		
a=2.0	k=0.	1			
# Part	b				
t	Ca				
50	0.03	8			
100	0.03	96 F			
200	0.02	22			
250	0.01	95			
300	0.01	74			
Model:					
t = ((.05^(1	-2))-Ca^(1-2))/(k*(1-2))			
Guess	value:				
A-0.1					

Step 3: Open Polymath. If you don't have it then refer to the installation instruction present on http://www.umich.edu/~elements/5e/software/polymath.html

When you open, the following window will appear. Click on Program tab and select "REG Regression". The shortcut button for REG is also available on menu bar as shown below by red circle

01 POLYMATH 6.1	0 Educational Release			
File Program	Window Help	_		
🗋 😰 🛛 LEQ Li	near Equations	2 13 13 (11) 14	× ! 🚟 ٩	?
NLE N	onlinear Equations			
DEQ D	ifferential Equations			
REG Re	egression			
		-		
3:47 PM 4/4/201	7 CAPS NUM			//

Step 4: A blank spreadsheet will open. Right click on cell corresponding to row 01, column C01 and paste the data. Your spreadsheet should look like this. For a detailed tutorial on nonlinear regression, refer to http://umich.edu/~elements/5e/software/polymath.html

🍓 POL	YMATH 6.10 P	Educational Rel	ease - [Data	a Table]				
🖽 Fil	e Program	Edit Row	Column F	ormat /	Analysis	Exam	ples Window Help	_ & ×
D 🖻	🗲 🔲 🐰	🖻 🛍 🖉	🐴 🕹	🗾 🔝	💵 🏢	💼 🌶	🎘 ! 🚟 🢡	
R001:	C001 C01	×	50			₽	Regression Analysis Graph]
	C01	C02	C03	C04		C0 📥	🖒 🔟 🖶 🗆 Grand	n 🗖 Residuals
01	50	0.038						
02	100	0.0306					✓ <u>R</u> eport Store Model	
03	150	0.0256					Linear & Polynomial Multiple linear	Nonlinear
04	200	0.0222					•	
05	250	0.0195					Dependent Variable	•
06	300	0.0174					La des en des Medeble	
07							Independent Variable	<u> </u>
08							Polynomial Degree	
09								
10								
11								
12								
13							L Through origin	
14								
15							Polynomial	
16							megration	
17								
18							- Polynomial	
19							' Derivative	
20								
-21						•		
No File	N	o Title				<u> </u>		
2.51 DM	47475012							
3.01 PM	4/4/2017	CARS INUM						/

Step 5: Change the column name of C01 to t. To change the column name of C01, double click on the column name "C01" or right click on C01 and select "Column Name..." A dialog box will appear where column name can be changed. Enter t in the column name and click OK

Similarly, change the column name of C02 to Ca

Step 6: Now go back to Polymath code page on website (**Step 1**) and select the equation for t as shown below

\leftarrow	G	() umich.edu/~elements/56	e/live/chapter07/LEP-7-3.pol		\$:
#Examp # Part	ple 7-3 t a	Use of Regression to Fin	d Rate Law Parameters			
t 50 100 150 200 250 300 Model	Ca 0.03 0.03 0.02 0.02 0.01 0.01	8 06 56 22 95 74				
t = ((.05^(1	-a))-Ca^(1-a))/(k*(1-a))	Сору	Ctrl+C	ì	
Guess	Value:	[Search Google for "t = ((.05^(1-a))-Ca^(1-a))/(k*(1-a))"		1	
a=2.0	k=0.	1	Print	Ctrl+P		
# Part t 50 100 150 200 250 300 Model: t = ()	Ca 0.03 0.03 0.02 0.02 0.01 0.01 : (.05^(1	8 06 56 22 95 74 -2))-Ca^(1-2))/(k*(1-2))	Inspect	Ctrl+Shift+I		
Guess k=0.1	Value:					

Step 7: Go back to your Polymath software and click on Nonlinear (red circle). Place the cursor in the rectangular box below "Model:" and paste your equation (blue rectangle). Click on the refresh button (green circle) to update the page.

🍓 PC	DLYMATH	6.10	Educa	ational R	elease -	[Data	Table]								
🛄 F	ile Pro	gram	Edit	t Row	Colun	nn Fo	ormat	Analy	ysis	Exan	nples	Window	v Help		_ 8 ×
D 🛛	j 🖉 🖡	8 8	Х 🖻	6	4	₹ь (2 🖪	dx (× !	#	<u> </u>		
R001	: C002	Ca		_ × 、	/ 0.03	3					Reg	pres <u>s</u> ion	A <u>n</u> alysi	s <u>G</u> raph	
	t		C	Ca	C03		C04		(C0	[]			🗖 Graph	Besiduals
01		50		0.038									·		
02		100		0.0306							I∎ E	Report	Store M	o <u>d</u> el	
03		150		0.0256							Line	ar & Polyn	iomial Mu	ıltiple linear 🎙	Nonlinear
04		200		0.0222								f®	1		
05		250		0.0195							Mod	lel: ^			
06		300		0.0174							t =	((.05^(1-a)]-Ca^(1-a))	/[k*[1-a]]	
07															
80															e.g. y = 2*x^A+B
09											Mod	del Parame	eters Initial I	Guess:	
10														_	
11											<u>a</u>			_	
12											Ca				
14											ĸ				
15															
16															
17															
18															
19															
20											De	pendent V	ariable	l	
21											Ind	ependent	variable/s	Junknown	
22										-	Мо .	del Variab	ie/s	ја, са, к	
•										•	Av.	ailable Vai	ables	unknown	
No Fil	e	١	No Title	•											
4:18 P	'M 4/4/	/2017	CAPS	NUM											

Step 8: Now you need to enter the guess value of the model parameters. The model parameters are a and k. Go back to the Polymath code (Step 1) and you will find that guess value is already given. Guess value given for a is 2 and for k it is 0.1. Enter the guess value under "Model Parameters Initial Guess" section.

If it displays Ca also in the model parameter list, then click on f(x) button. It will remove Ca from the parameter list.

You can also choose your own guess value (Note: The solution Polymath provides may be very sensitive to the initial value guesses, so if the first regression solution is not very good, you may want to change the initial guesses and rerun the regression).

🍓 PC	LYMATH 6	5.10 I	Educat	tional R	elease	- [Da	ata Tabl	e]	-	7	-	-	-			
🔲 F	ile Progr	am	Edit	Row	Colur	nn	Forma	t i	Analy	/sis	Exar	nples	Windo	w Help		_ 8 ×
	ê 😰 🖬	8		B 0	4	Ц,		f ×		=	mr.	>	靈	8		
R001	: C002 C	3		×	0.03	8		_				Re	gres <u>s</u> io	n A <u>n</u> alysi	s Graph	
	t		Ca	3	C03	3	0	:04			<u>co</u>	1	5 🗷	•	<u> </u>	Residu <u>a</u> ls
01		50		0.038							-		Benort	Store M	odel	
02	1	00	(0.0306								1.	Depoir	1U	loger	
03	1	50	(0.0256								Lin	ear & Poly	mornial Mu	ultiple linear	Nonlinear
04	2	00 50	(0.0222								Мо	odel: 🔮	2		L-M 💌
06	3	00	(0.0174								t =	: ((.05^(1-	a))-Ca^(1-a)))/(k*(1-a))	
07																
08												_				e.e. v = 2*×^4+B
09												Мо	del Parar	neters Initial	Guess:	0.g. y - 2 X A+D
10												M	odel parm	Initial gue	55	
11												a		2		
12												k		0.1		
13																1
14																
15																
16																
17																
18																
19												D	enendent	Variable	t	
20												In	depender	v Uariable /e	Ca	
21												In M	odel) (cris	h vanabie/s	a k	
22											-		uninkle V	nie/s		
•											١		vallable V	andDies	jCa, t	
No Fil	e	N	o Title													
4:22 P	M 4/4/20	017	CAPS	NUM												11

Step 9: When you are done, click on pink arrow \Rightarrow to have Polymath perform the regression. You will see a screen like this that details the results from the regression analysis. You can see that $R^2 = 0.999$ which indicates a very good fit

🍓 POLYMAT	H 6.10 Educatio	nal Release ·	- [Nonlinear Report #	1]	- te		23
🧐 File 🛛 Ed	lit Window H	Help				_ E	r ×
🗅 🧉 💕 🛙	🔚 👗 🗈 🛍	1 Ø M	2. 🛛 💌 💷	1 🖬 🌂	! 🚟 ?		
POLYMA Nonlinear Re Model: t =	TH Report egression (L-M) = ((.05^(1-a))-	Ca^(1-a))/((k*(1-a))			04-Apr-2017	•
Variable	Initial guess	Value	95% confidence				
а	2.	2.04472	0.038271				
k	0.1	0.1467193	0.0198118				
Nonlinear Max # iter Precision R^2 R^2adj Rmsd Variance	regression s ations = 64 0.9999547 0.9999433 0.2346871 0.4957023	ettings					
General Sample si Model var Indep vars Iterations	ze 6 s 2 s 1 8						
No File	POLYMAT	H Report					
4:29 PM 4/4	4/2017 CAPS	MUM					1

From the above report

Step 10: Now, you can go back to Step 1 and repeat the Step 2-9 to do the second part of Example 7-3