A significant economic incentive

Web Solved Problems

Web Example SP-8.1 Hydrodealkylation of Mesitylene in a PFR

The production of m-xylene by the hydrodealkylation of mesitylene over a Houdry Detrol catalyst ${ }^{1}$ involves the following reactions:

(WESP-8.1.1)
m-Xylene can also undergo hydrodealkylation to form toluene:

(WESP-8.1.2)

The second reaction is undesirable, because m-xylene sells for a higher price than toluene $\left(\$ 1.32 / \mathrm{lb}_{\mathrm{m}} \text { vs. } \$ 0.30 / \mathrm{lb}_{\mathrm{m}}\right)^{2}$ Thus we see that there is a significant incentive to maximize the production of m-xylene.

The hydrodealkylation of mesitylene is to be carried out isothermally at $1500^{\circ} \mathrm{R}$ and 35 atm in a packed-bed reactor in which the feed is $66.7 \mathrm{~mol} \%$ hydrogen and $33.3 \mathrm{~mol} \%$ mesitylene. The volumetric feed rate is $476 \mathrm{ft}^{3} / \mathrm{h}$ and the reactor volume (i.e., $V=W / \rho_{b}$) is $238 \mathrm{ft}^{3}$.

The rate laws for reactions 1 and 2 are, respectively,

$$
\begin{align*}
-r_{1 \mathrm{M}} & =k_{1} C_{\mathrm{M}} C_{\mathrm{H}}^{0.5} \tag{WESP-8.1.3}\\
r_{2 \mathrm{~T}} & =k_{2} C_{\mathrm{X}} C_{\mathrm{H}}^{0.5} \tag{WESP-8.1.4}
\end{align*}
$$

where the subscripts are: $\mathrm{M}=$ mesitylene, $\mathrm{X}=m$-xylene, $\mathrm{T}=$ toluene, $\mathrm{Me}=$ methane, and $\mathrm{H}=$ hydrogen $\left(\mathrm{H}_{2}\right)$.

At $1500^{\circ} \mathrm{R}$, the specific reaction rates are

$$
\begin{aligned}
& \text { Reaction 1: } k_{1}=55.20\left(\mathrm{ft}^{3} / \mathrm{lb} \mathrm{~mol}\right)^{0.5} / \mathrm{h} \\
& \text { Reaction 2: } k_{2}=30.20\left(\mathrm{ft}^{3} / \mathrm{lb} \mathrm{~mol}\right)^{0.5} / \mathrm{h}
\end{aligned}
$$

The bulk density of the catalyst has been included in the specific reaction rate (i.e., $k_{1}=k_{1}^{\prime} \rho_{b}$).

Plot the concentrations of hydrogen, mesitylene, and xylene as a function of PFR space time. Calculate the space time where the production of xylene is a maximum (i.e., $\tau_{\text {opt }}$).

[^0]Mole balance on each and every species

Solution

$$
\begin{array}{ll}
\text { Reaction } 1: & \mathrm{M}+\mathrm{H} \longrightarrow \mathrm{X}+\mathrm{Me} \tag{WESP-8.1.1}\\
\text { Reaction } 2: & \mathrm{X}+\mathrm{H} \longrightarrow \mathrm{~T}+\mathrm{Me}
\end{array}
$$

(WESP-8.1.2)

1. Mole balances:

Hydrogen: $\quad \frac{d F_{\mathrm{H}}}{d V}=r_{\mathrm{H}}$
Mesitylene: $\quad \frac{d F_{\mathrm{M}}}{d V}=r_{\mathrm{M}}$
Xylene: $\quad \frac{d F_{\mathrm{X}}}{d V}=r_{\mathrm{X}}$

Toluene:

$$
\begin{equation*}
\frac{d F_{\mathrm{T}}}{d V}=r_{\mathrm{T}} \tag{WESP-8.1.8}
\end{equation*}
$$

Methane: $\quad \frac{d F_{\mathrm{Me}}}{d V}=r_{\mathrm{Me}}$
(WESP-8.1.9)
2. Rate laws and net rates: Given

$$
\begin{array}{ll}
\text { Reaction 1: } & -r_{1 \mathrm{M}}=k_{1} C_{\mathrm{H}}^{1 / 2} C_{\mathrm{M}} \\
\text { Reaction 2: } & r_{2 T}=k_{2} C_{\mathrm{H}}^{1 / 2} C_{\mathrm{X}} \tag{WESP-8.1.4}
\end{array}
$$

Relative rates:

$$
\begin{align*}
& -r_{1 \mathrm{H}}=-r_{1 \mathrm{M}}=r_{1 \mathrm{Me}}=r_{1 \mathrm{X}} \tag{1}\\
& r_{2 \mathrm{~T}}=r_{2 \mathrm{Me}}=-r_{2 \mathrm{H}}=-r_{2 \mathrm{X}} \tag{WESP-8.1.10}
\end{align*}
$$

(WESP-8.1.11)
Net rates:

$$
\begin{align*}
& r_{\mathrm{M}}=r_{1 \mathrm{M}}=-k_{1} C_{\mathrm{H}}^{1 / 2} C_{\mathrm{M}} \tag{WESP-8.1.12}\\
& r_{\mathrm{H}}=r_{1 \mathrm{H}}+r_{2 \mathrm{H}}=r_{1 \mathrm{H}}-r_{2 \mathrm{~T}}=-k_{1} C_{\mathrm{H}}^{1 / 2} C_{\mathrm{M}}-k_{2} C_{\mathrm{H}}^{1 / 2} C_{\mathrm{X}} \tag{WESP-8.1.13}\\
& r_{\mathrm{X}}=r_{1 \mathrm{X}}+r_{2 \mathrm{X}}=-r_{1 \mathrm{H}}-r_{2 \mathrm{~T}}=k_{1} C_{\mathrm{H}}^{1 / 2} C_{\mathrm{M}}-k_{2} C_{\mathrm{H}}^{1 / 2} C_{\mathrm{X}} \tag{WESP-8.1.14}\\
& r_{\mathrm{Me}}=r_{1 \mathrm{Me}}+r_{2 \mathrm{Me}}=-r_{1 \mathrm{H}}+r_{2 \mathrm{~T}}=k_{1} C_{\mathrm{H}}^{1 / 2} C_{\mathrm{M}}+k_{2} C_{\mathrm{H}}^{1 / 2} C_{\mathrm{X}} \tag{WESP-8.1.15}\\
& r_{\mathrm{T}}=r_{2 \mathrm{~T}}=k_{2} C_{\mathrm{H}}^{1 / 2} C_{\mathrm{X}} \tag{WESP-8.1.16}
\end{align*}
$$

3. Stoichiometry

The volumetric flow rate is

$$
v=v_{0} \frac{F_{T}}{F_{T 0}} \frac{P_{0}}{P} \frac{T}{T_{0}}
$$

The emergence of user-friendly $O D E$ solvers favors this approach over fractional conversion.

Because there is no pressure drop $P=P_{0}$ (i.e., $y=1$), the reaction is carried out isothermally, $T=T_{0}$, and there is no change in the total number of moles; consequently,

$$
v=v_{0}
$$

Flow rates:

$$
\begin{align*}
F_{\mathrm{H}} & =v_{0} C_{\mathrm{H}} \tag{WESP-8.1.17}\\
F_{\mathrm{M}} & =v_{0} C_{\mathrm{M}} \tag{WESP-8.1.18}\\
F_{\mathrm{X}} & =v_{0} C_{\mathrm{X}} \tag{WESP-8.1.19}\\
F_{\mathrm{Me}} & =v_{0} C_{\mathrm{Me}}=F_{\mathrm{H} 0}-F_{\mathrm{H}}=v_{0}\left(C_{\mathrm{H} 0}-C_{\mathrm{H}}\right) \tag{WESP-8.1.20}\\
F_{\mathrm{T}} & =F_{\mathrm{M} 0}-F_{\mathrm{M}}-F_{\mathrm{X}}=v_{0}\left(C_{\mathrm{M} 0}-C_{\mathrm{M}}-C_{\mathrm{X}}\right) \tag{WESP-8.1.21}
\end{align*}
$$

4. Combining and substituting in terms of the space-time yields

$$
\tau=\frac{V}{v_{0}}
$$

If we know $C_{\mathrm{M}}, C_{\mathrm{H}}$, and C_{X}, then C_{Me} and C_{T} can be calculated from the reaction stoichiometry. Consequently, we need only to solve the following three equations:

$$
\begin{align*}
& \frac{d C_{\mathrm{H}}}{d \tau}=-k_{1} C_{\mathrm{H}}^{1 / 2} C_{\mathrm{M}}-k_{2} C_{\mathrm{X}} C_{\mathrm{H}}^{1 / 2} \tag{WESP-8.1.22}\\
& \frac{d C_{\mathrm{M}}}{d \tau}=-k_{1} C_{\mathrm{M}} C_{\mathrm{H}}^{1 / 2} \tag{WESP-8.1.23}\\
& \frac{d C_{\mathrm{X}}}{d \tau}=k_{1} C_{\mathrm{M}} C_{\mathrm{H}}^{1 / 2}-k_{2} C_{\mathrm{X}} C_{\mathrm{H}}^{1 / 2}
\end{align*}
$$

(WESP-8.1.24)

5. Parameter evaluation:

At $T_{0}=1,500^{\circ} \mathrm{R}$ and $P_{0}=35 \mathrm{~atm}$, the total concentration is

$$
\begin{aligned}
C_{T 0} & \left.=\frac{P_{0}}{R T_{0}}=\frac{35 \mathrm{~atm}}{\left(0.73 \frac{\mathrm{~atm} \mathrm{ft}}{} \mathrm{lb} \mathrm{~mol} \cdot^{\circ} \mathrm{R}\right.}\right)\left(1,500^{\circ} \mathrm{R}\right)
\end{aligned}=0.032 \mathrm{lb} \mathrm{~mol} / \mathrm{ft}^{3} .
$$

$$
\begin{gathered}
F_{T 0}=C_{T 0} v_{0}=\left(0.032 \frac{\mathrm{lb} \mathrm{~mol}}{\mathrm{ft}^{3}}\right)\left(476 \frac{\mathrm{ft}^{3}}{\mathrm{~h}}\right) \\
F_{T 0}=15.23 \mathrm{lb} \mathrm{~mol} / \mathrm{h}
\end{gathered}
$$

We now solve these three equations, (WESP-8.1.22) to (WESP-8.1.24), simultaneously using Polymath. The program and output in graphical form are shown in Table WESP-8.1.1 and Figure WESP-8.1.1, respectively. However, I hasten to point out that these equations can be solved analytically and the solution was given in the first edition of this text.

Figure WESP-8.1.1 Concentration profiles in a PFR.

Table WESP-8.1.1. Polymath Program

ODE Report (RKF45)

Differential equations as entered by the user
[1] $d(C h) / d($ tau $)=r 1 h+r 2 h$
[2] $d(C m) / d(t a u)=r 1 m$
[3] $d(C x) / d($ tau $)=r 1 x+r 2 x$

Explicit equations as entered by the user

```
    [1] \(\mathrm{k} 1=55.2\)
    [2] \(\mathrm{k} 2=30.2\)
    (3) \(\mathrm{r} 1 \mathrm{~m}=-\mathrm{k} 1^{*} \mathrm{Cm}^{*}(\mathrm{Ch} \wedge .5)\)
    [4] \(\mathrm{r} 2 \mathrm{t}=\mathrm{k} 2^{*} \mathrm{Cx}^{*}\left(\mathrm{Ch}^{\wedge} .5\right)\)
    [5] \(\mathrm{r} 1 \mathrm{~h}=\mathrm{rfm}\)
    [6] \(\mathrm{r} 2 \mathrm{~m}=-\mathrm{r} 2 \mathrm{t}\)
    [7] \(r 1 x=-r 1 m\)
    (8) \(\mathrm{r} 2 \mathrm{x}=-\mathrm{r} 2 \mathrm{t}\)
    (9) \(\mathrm{r} 2 \mathrm{~h}=-\mathrm{r} 2 \mathrm{t}\)
```


Web Example SP-8.2 Hydrodealkylation of Mesitylene in a CSTR

For the multiple reactions and conditions described in Web Example SP-8.1, calculate the conversion of hydrogen and mesitylene along with the exiting concentrations of mesitylene, hydrogen, and xylene in a CSTR.

Solution

As in Web Example SP-8.1, we assume $v=v_{0}$; for example,

$$
F_{\mathrm{A}}=v C_{\mathrm{A}}=v_{0} C_{\mathrm{A}} \text {, etc. }
$$

1. CSTR Mole Balances:

Hydrogen: $\quad v_{0} C_{\mathrm{H} 0}-v_{0} C_{\mathrm{H}}=-r_{\mathrm{H}} V$
Mesitylene: $\quad v_{0} C_{\mathrm{M} 0}-v_{0} C_{\mathrm{M}}=-r_{\mathrm{M}} V$
(WESP-8.2.1)

Xylene:
$v_{0} C_{\mathrm{X}}=r_{\mathrm{X}} V$
Toluene:
$v_{0} C_{\mathrm{T}}=r_{\mathrm{T}} V$
Methane: $\quad v_{0} C_{\mathrm{Me}}=r_{\mathrm{Me}} V$
(WESP-8.2.4)

2. Net Rates

The rate laws and net rates of reaction for these reactions were given by Equations (WESP-8.1.12) through (WESP-8.1.16) in Web Example SP-8.1.
3. Stoichiometry: Same as in Web Example SP-8.1.

Combining Equations (WESP-8.1.12) through (WESP-8.1.16) with Equations (WESP-8.2.11) through (WESP-8.2.3) and after dividing by $v_{0},\left(\tau=V / v_{0}\right)$, yields

$$
\begin{align*}
C_{\mathrm{H} 0}-C_{\mathrm{H}} & =\left(k_{1} C_{\mathrm{H}}^{1 / 2} C_{\mathrm{M}}+k_{2} C_{\mathrm{H}}^{1 / 2} C_{\mathrm{X}}\right) \tau \tag{WESP-8.2.6}\\
C_{\mathrm{M} 0}-C_{\mathrm{M}} & =\left(k_{1} C_{\mathrm{H}}^{1 / 2} C_{\mathrm{M}}\right) \tau \tag{WESP-8.2.7}\\
C_{\mathrm{X}} & =\left(k_{1} C_{\mathrm{H}}^{1 / 2} C_{\mathrm{M}}-k_{2} C_{\mathrm{H}}^{1 / 2} C_{\mathrm{X}}\right) \tau \tag{WESP-8.2.8}
\end{align*}
$$

Next, we put these equations in a form such that they can be readily solved using Polymath.

$$
\begin{align*}
& f\left(C_{\mathrm{H}}\right)=0=C_{\mathrm{H}}-C_{\mathrm{H} 0}+\left(k_{1} C_{\mathrm{H}}^{1 / 2} C_{\mathrm{M}}+k_{2} C_{\mathrm{H}}^{1 / 2} C_{\mathrm{X}}\right) \tau \tag{WESP-8.2.9}\\
& f\left(C_{\mathrm{M}}\right)=0=C_{\mathrm{M}}-C_{\mathrm{M} 0}+k_{1} C_{\mathrm{H}}^{1 / 2} C_{\mathrm{M}} \tau \tag{WESP-8.2.10}\\
& f\left(C_{\mathrm{X}}\right)=0=\left(k_{1} C_{\mathrm{H}}^{1 / 2} C_{\mathrm{M}}-k_{2} C_{\mathrm{H}}^{1 / 2} C_{\mathrm{X}}\right) \tau-C_{\mathrm{X}} \tag{WESP-8.2.11}
\end{align*}
$$

The Polymath program and solution to equations (WESP-8.2.9), (WESP-8.2.10), and (WESP-8.2.1) are shown in Table WESP-8.2.1. The problem was solved for different values of τ and the results are plotted in Figure WESP-8.2.1.

For a space time of $\tau=0.5$, the exiting concentrations are $C_{\mathrm{H}}=0.0089$, $C_{\mathrm{M}}=0.0029$, and $C_{\mathrm{X}}=0.0033$ all in $\mathrm{lb} \mathrm{mol} / \mathrm{ft}^{3}$. The overall conversion is

Hydrogen: $\quad X_{\mathrm{H}}=\frac{F_{\mathrm{H} 0}-F_{\mathrm{H}}}{F_{\mathrm{H} 0}}=\frac{C_{\mathrm{H} 0}-C_{\mathrm{H}}}{C_{\mathrm{H} 0}}=\frac{0.021-0.0089}{0.021}=0.58$

Mesitylene: $\quad X_{\mathrm{M}}=\frac{F_{\mathrm{M} 0}-F_{\mathrm{M}}}{F_{\mathrm{M} 0}}=\frac{C_{\mathrm{M} 0}-C_{\mathrm{M}}}{C_{\mathrm{M} 0}}=\frac{0.0105-0.0029}{0.0105}=0.72$

Table WESP-8.2.1. Polymath Program and Solution

NLES Solution

Variable	Value	$\mathrm{f}(\mathrm{x})$	Ini Guess
Ch	0.0089436	$1.995 \mathrm{E}-10$	0.006
Cm	0.0029085	$7.834 \mathrm{E}-12$	0.0033
Cx	0.0031266	$-1.839 \mathrm{E}-10$	0.005
tau	0.5		

NLES Report (safenewt)

Nonlinear equations

$$
\mathrm{f}(\mathrm{Ch})=\mathrm{Ch}-.021+\left(55.2^{*} \mathrm{Cm}^{*} \mathrm{Ch}^{\wedge} .5+30.2^{*} \mathrm{Cx}^{*} \mathrm{Ch}^{\wedge} .5\right)^{\star} \text { tau }=0
$$

$$
\mathrm{f}(\mathrm{Cm})=\mathrm{Cm}-.0105+\left(55.2^{*} \mathrm{Cm}^{*} \mathrm{Ch}^{\wedge} .5\right)^{*} \text { tau }=0
$$

[3] $\mathrm{f}(\mathrm{Cx})=\left(55.2^{\star} \mathrm{Cm}^{\star} \mathrm{Ch}^{\wedge} .5-30.2^{\star} \mathrm{Cx}^{\star} \mathrm{Ch}^{\wedge} .5\right)^{\star}$ tau- $\mathrm{Cx}=0$

Explicit equations

[1] $\mathrm{tau}=0.5$

Figure WESP-8.2.1 Concentrations as a function of space time.
We resolve Equations (WESP-8.2.6) through (WESP-8.2.11) for different values of τ to arrive at Figure WESP-8.2.1.

The moles of hydrogen consumed in reaction 1 are equal to the moles of mesitylene consumed. Therefore, the conversion of hydrogen in reaction 1 is

$$
X_{1 \mathrm{H}}=\frac{C_{\mathrm{M} 0}-C_{\mathrm{M}}}{C_{\mathrm{H} 0}}=\frac{0.0105-0.0029}{0.021}=X_{1 \mathrm{H}}=0.36
$$

The conversion of hydrogen in reaction 2 is just the overall conversion minus the conversion in reaction 1 ; that is,

$$
X_{2 \mathrm{H}}=X_{\mathrm{H}}-X_{1 \mathrm{H}}=0.58-0.36=0.22
$$

The yield of xylene from mesitylene based on molar flow rates exiting the CSTR for $\tau=0.5$ is

Overall selectivity, \tilde{S}, and yield, \tilde{Y}.

$$
\begin{aligned}
& \tilde{Y}_{\mathrm{M} / \mathrm{X}}=\frac{F_{\mathrm{X}}}{F_{\mathrm{M} 0}-F_{\mathrm{M}}}=\frac{C_{\mathrm{X}}}{C_{\mathrm{M} 0}-C_{\mathrm{M}}}=\frac{0.00313}{0.0105-0.0029} \\
& \tilde{Y}_{\mathrm{M} / \mathrm{X}}=\frac{0.41 \text { mol xylene produced }}{\text { mole mesitylene reacted }}
\end{aligned}
$$

The overall selectivity of xylene relative to toluene is

$$
\tilde{S}_{\mathrm{X} / \mathrm{T}}=\frac{F_{\mathrm{X}}}{F_{\mathrm{T}}}=\frac{C_{\mathrm{X}}}{C_{\mathrm{T}}}=\frac{C_{\mathrm{X}}}{C_{\mathrm{M} 0}-C_{\mathrm{M}}-C_{\mathrm{X}}}=\frac{0.00313}{0.0105-0.0029-0.00313}
$$

$$
\tilde{S}_{\mathrm{X} / \mathrm{T}}=\frac{0.7 \mathrm{~mol} \text { xylene produced }}{\text { mole toluene produced }}
$$

Recall that for a CSTR the overall selectivity and yield are identical with the instantaneous selectivity and yield.

Web Example SP-8.3 Calculating Concentrations as Functions of Position for NH_{3} Oxidation in a PFR

The following gas-phase reactions take place simultaneously on a metal oxide-supported catalyst:

1. $4 \mathrm{NH}_{3}+5 \mathrm{O}_{2} \longrightarrow 4 \mathrm{NO}+6 \mathrm{H}_{2} \mathrm{O}$
2. $2 \mathrm{NH}_{3}+1.5 \mathrm{O}_{2} \longrightarrow \mathrm{~N}_{2}+3 \mathrm{H}_{2} \mathrm{O}$
3. $2 \mathrm{NO}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{NO}_{2}$
4. $4 \mathrm{NH}_{3}+6 \mathrm{NO} \longrightarrow 5 \mathrm{~N}_{2}+6 \mathrm{H}_{2} \mathrm{O}$

Writing these equations in terms of symbols yields

$$
\begin{array}{lrl}
\text { Reaction 1: } & 4 \mathrm{~A}+5 \mathrm{~B} \longrightarrow 4 \mathrm{C}+6 \mathrm{D} & -r_{1 \mathrm{~A}}=k_{1 \mathrm{~A}} C_{\mathrm{A}} C_{\mathrm{B}}^{2} \text { (WESP-8.3.1) } \\
\text { Reaction 2: } 2 \mathrm{~A}+1.5 \mathrm{~B} \longrightarrow \mathrm{E}+3 \mathrm{D} & -r_{2 \mathrm{~A}}=k_{2 \mathrm{~A}} C_{\mathrm{A}} C_{\mathrm{B}} \text { (WESP-8.3.2) } \\
\text { Reaction 3: } \quad 2 \mathrm{C}+\mathrm{B} \longrightarrow 2 \mathrm{~F} & -r_{3 \mathrm{~B}}=k_{3 \mathrm{~B}} C_{\mathrm{C}}^{2} C_{\mathrm{B}} \text { (WESP-8.3.3) } \\
\text { Reaction 4: } \quad 4 \mathrm{~A}+6 \mathrm{C} \longrightarrow 5 \mathrm{E}+6 \mathrm{D} & -r_{4 \mathrm{C}}=k_{4 \mathrm{C}} C_{\mathrm{C}} C_{\mathrm{A}}^{2 / 3} \text { (WESP-8.3.4) }
\end{array}
$$

$$
\text { with }^{3} \quad k_{1 \mathrm{~A}}=5.0\left(\mathrm{~m}^{3} / \mathrm{kmol}\right)^{2} / \mathrm{min} \quad k_{2 A}=2.0 \mathrm{~m}^{3} / \mathrm{kmol} \cdot \mathrm{~min}
$$

$$
k_{3 \mathrm{~B}}=10.0\left(\mathrm{~m}^{3} / \mathrm{kmol}\right)^{2} / \mathrm{min} \quad k_{4 \mathrm{C}}=5.0\left(\mathrm{~m}^{3} / \mathrm{kmol}\right)^{2 / 3} / \mathrm{min}
$$

[^1]Solutions to these equations are most easily obtained with an ODE solver

Note: We have converted the specific reaction rates to a per unit volume basis by multiplying the k^{\prime} on a per mass of catalyst basis by the bulk density of the packed bed (i.e., $k=k^{\prime} \rho_{\mathrm{B}}$).

Determine the concentrations as a function of position (i.e., volume) in a PFR.
Additional information: Feed rate $=10 \mathrm{dm}^{3} / \mathrm{min}$; volume of reactor $=10 \mathrm{dm}^{3}$; and

$$
C_{\mathrm{A} 0}=C_{\mathrm{B} 0}=1.0 \mathrm{~mol} / \mathrm{dm}^{3}, C_{T 0}=2.0 \mathrm{~mol} / \mathrm{dm}^{3}
$$

Solution

Mole balances:

Species A: $\quad \frac{d F_{\mathrm{A}}}{d V}=r_{\mathrm{A}}$
(WESP-8.3.5)

Species B: $\quad \frac{d F_{\mathrm{B}}}{d V}=r_{\mathrm{B}}$

Species C: $\quad \frac{d F_{\mathrm{C}}}{d V}=r_{\mathrm{C}}$
(WESP-8.3.7)

Species D: $\quad \frac{d F_{\mathrm{D}}}{d V}=r_{\mathrm{D}}$

Species E: $\quad \frac{d F_{\mathrm{E}}}{d V}=r_{\mathrm{E}}$
Species F: $\quad \frac{d F_{\mathrm{F}}}{d V}=r_{\mathrm{F}}$
(WESP-8.3.10)

Total: $\quad F_{T}=F_{\mathrm{A}}+F_{\mathrm{B}}+F_{\mathrm{C}}+F_{\mathrm{D}}+F_{\mathrm{E}}+F_{\mathrm{F}}$
(WESP-8.3.11)
Rate laws: See above for $r_{1 \mathrm{~A}}, r_{2 \mathrm{~A}}, r_{3 \mathrm{~B}}$, and $r_{4 \mathrm{C}}$.
Stoichiometry:
A. Relative rates

Reaction 1: $\quad \frac{r_{1 \mathrm{~A}}}{-4}=\frac{r_{1 \mathrm{~B}}}{-5}=\frac{r_{1 \mathrm{C}}}{4}=\frac{r_{1 \mathrm{D}}}{6}$
(WESP-8.3.12)

Reaction 2: $\quad \frac{r_{2 \mathrm{~A}}}{-2}=\frac{r_{2 \mathrm{~B}}}{-1.5}=\frac{r_{3 \mathrm{E}}}{1}=\frac{r_{2 \mathrm{D}}}{3}$
(WESP-8.3.13)

Reaction 3: $\quad \frac{r_{3 \mathrm{C}}}{-2}=\frac{r_{3 \mathrm{~B}}}{-1}=\frac{r_{3 \mathrm{~F}}}{2}$
(WESP-8.3.14)

Reaction 4: $\quad \frac{r_{4 \mathrm{~A}}}{-4}=\frac{r_{4 \mathrm{C}}}{-6}=\frac{r_{4 \mathrm{E}}}{5}=\frac{r_{4 \mathrm{D}}}{6}$
(WESP-8.3.15)
B. Concentrations: For isothermal operation and no pressure drop, the concentrations are given in terms of the molar flow rates by

$$
C_{j}=\frac{F_{j}}{F_{T}} C_{T 0}
$$

Next substitute for the concentration of each species in the rate laws. Writing the rate law for species A in reaction 1 in terms of the rate of formation, $r_{1 \mathrm{~A}}$, and molar flow rates, F_{A} and F_{B}, we obtain

$$
r_{1 \mathrm{~A}}=-k_{1} C_{\mathrm{A}} C_{\mathrm{B}}^{2}=-k_{1 \mathrm{~A}}\left(C_{T 0} \frac{F_{\mathrm{A}}}{F_{T}}\right)\left(C_{T 0} \frac{F_{\mathrm{B}}}{F_{T}}\right)^{2}
$$

Thus

$$
\begin{equation*}
r_{1 \mathrm{~A}}=-k_{1 \mathrm{~A}} C_{T 0}^{3} \frac{F_{\mathrm{A}} F_{\mathrm{B}}^{2}}{F_{T}^{3}} \tag{WESP-8.3.16}
\end{equation*}
$$

Similarly for the other reactions,

$$
\begin{align*}
& r_{2 \mathrm{~A}}=-k_{2 \mathrm{~A}} C_{T 0}^{2} \frac{F_{\mathrm{A}} F_{\mathrm{B}}}{F_{T}^{2}} \tag{WESP-8.3.17}\\
& r_{3 \mathrm{~B}}=-k_{3 \mathrm{~B}} C_{T 0}^{3} \frac{F_{\mathrm{C}}^{2} F_{\mathrm{B}}}{F_{T}^{3}} \tag{WESP-8.3.18}\\
& r_{4 \mathrm{C}}=-k_{4 \mathrm{C}} C_{T 0}^{5 / 3} \frac{F_{\mathrm{C}} F_{\mathrm{A}}^{2 / 3}}{F_{T}^{5 / 3}} \tag{WESP-8.3.19}
\end{align*}
$$

Next, we determine the net rate of reaction for each species by using the appropriate stoichiometric coefficients and then summing the rates of the individual reactions.

Net rates of formation:

$$
\begin{array}{ll}
\text { Species A: } & r_{\mathrm{A}}=r_{1 \mathrm{~A}}+r_{2 \mathrm{~A}}+\frac{2}{3} r_{4 \mathrm{C}} \\
\text { Species B: } & r_{\mathrm{B}}=1.25 r_{1 \mathrm{~A}}+0.75 r_{2 \mathrm{~A}}+r_{3 \mathrm{~B}} \\
\text { Species C: } & r_{\mathrm{C}}=-r_{1 \mathrm{~A}}+2 r_{3 \mathrm{~B}}+r_{4 \mathrm{C}} \\
\text { Species D: } & r_{\mathrm{D}}=-1.5 r_{1 \mathrm{~A}}-1.5 r_{2 \mathrm{~A}}-r_{4 \mathrm{C}} \\
\text { Species E: } & r_{\mathrm{E}}=-\frac{r_{2 \mathrm{~A}}}{2}-\frac{5}{6} r_{4 \mathrm{C}} \tag{WESP-8.3.24}\\
\text { Species F: } & r_{\mathrm{F}}=-2 r_{3 \mathrm{~B}}
\end{array}
$$

(WESP-8.3.25)

Combining: Rather than combining the concentrations, rate laws, and mole balances to write everything in terms of the molar flow rate as we did in the past, it is more convenient here to write our computer solution (either Polymath or our own program) using equations for $r_{1 \mathrm{~A}}, F_{\mathrm{A}}$, and so on. Consequently, we shall write

Equations (WESP-8.3.16) through (WESP-8.3.19) and (WESP-8.3.5) through (WESP-8.3.11) as individual lines and let the computer combine them to obtain a solution.

The corresponding Polymath program written for this problem is shown in Table WESP-8.3.1 and a plot of the output is shown in Figure WESP-8.3.1. One notes that there is a maximum in the concentration of NO (i.e., C) at approximately $1.5 \mathrm{dm}^{3}$.

However, there is one fly in the ointment here: It may not be possible to determine the rate laws for each of the reactions. In this case, it may be necessary to work with the minimum number of reactions and hope that a rate law can be found for each reaction. That is, you need to find the number of linearly independent reactions in your reaction set. In Web Example SP-8.3, there are four reactions given [(WESP-8.3.5) through (WESP-8.3.8)]. However, only three of these reactions are independent, as the fourth can be formed from a linear combination of the other three. Techniques for determining the number of independent reactions are given by Aris. ${ }^{4}$

[^2]

Living Example Problem

Table WESP-8.3.1. Polymath Program

POLYMATH Results

Example 6-10 Calculating Concentrations as a Function of Position for NH3 Oxidation in a PFR

Calculated values of the DEO variables

Variable	initial value	minimal value	maximal value	final val
V	0	0	10	10
FA	10	1.504099	10	1.504099
FB	10	2.4000779	10	2.4000779
FC	0	0	1.6519497	0.6038017
FD	0	0	12.743851	12.743851
FE	0	0	3.4830019	3.4830019
FF	0	0	0.9260955	0.9260955
Ft	20	20	21.660927	21.660927
r1A	-5	-5	-0.0341001	-0.0341001
r2A	-2	-2	-0.0615514	-0.0615514
r 4C	0	-0.5619376	0	-0.0747591
r3B	0	-0.1448551	0	-0.0068877
CA	1	0.1388767	1	0.1388767
rA	-7	-7	-0.1454909	-0.1454909
rB	-7.75	-7.75	-0.0956764	-0.0956764
r	5	-0.2008343	5	-0.0544343
rD	10.5	0.2182363	10.5	0.2182363
re	1	0.0930749	1.0317775	0.0930749
rF	0	0	0.2897102	0.0137754

ODE Report (RKF45)

Differential equations as entered by the user
[1] $d(F A) / d(V)=n s$
2) $\mathrm{d}(\mathrm{FB}) / \mathrm{d}(\mathrm{V})=\mathrm{rB}$

3] $d(F C) / d(V)=r C$
(4) $d(F D) / d(V)=r D$
[5] $d(F E) / d(V)=r E$
[6] $d(F F) / d(V)=r F$
Explicit equations as entered by the user
[1] $\mathrm{Ft}=\mathrm{FA}+\mathrm{FB}+\mathrm{FC}+\mathrm{FD}+\mathrm{FE}+\mathrm{FF}$
[2] $\mathrm{rlA}=-5^{*} \mathrm{~B}^{*}(\mathrm{FA} / \mathrm{Ft})^{*}(\mathrm{FB} / \mathrm{Ft})^{\wedge}{ }^{\wedge}$
(3) $\mathrm{r} 2 \mathrm{~A}=-2^{*} 4^{*}(\mathrm{FA} / \mathrm{Ft})^{*}(\mathrm{FB} / \mathrm{Ft})$
[4] $\mathrm{r} 4 \mathrm{C}=-5^{*} 3.175^{*}(\mathrm{FC} / \mathrm{Ft})^{*}(\mathrm{FA} / \mathrm{Ft})^{\wedge}(2 / 3)$
5] $\mathrm{r} 3 \mathrm{~B}=-10^{*} 8^{*}(\mathrm{FC} / \mathrm{Ft})^{\wedge} 2^{*}(\mathrm{FB} / \mathrm{Ft})$
(6) $\mathrm{CA}=2^{*} \mathrm{FA} / \mathrm{Ft}$
(7) $\mathrm{r} A=r 1 A+r 2 A+2 * r 4 C / 3$
(8) $\mathrm{rB}=1.25^{\circ} \mathrm{r} 1 \mathrm{~A}+.75^{\circ} \mathrm{r} 2 \mathrm{~A}+\mathrm{r} 3 \mathrm{~B}$
[9] $\mathrm{rC}=-\mathrm{r} 1 \mathrm{~A}+2^{*} \mathrm{r} 3 \mathrm{~B}+\mathrm{r} 4 \mathrm{C}$
[10) rD $=-1.5^{*}$ r1A-1.5* $12 A-14 C$
(11) $\mathrm{rE}=-.5^{*} \mathrm{r} 2 \mathrm{~A}-5^{*} \mathrm{r} 4 \mathrm{C} / 6$
(12) $\mathrm{rF}=-2^{*} \mathrm{r} 3 \mathrm{~B}$

Figure WESP-8.3.1 Molar flow rates profiles.

[^0]: ${ }^{1}$ Ind. Eng. Chem. Process Des. Dev., 4, 92 (1965); 5, 146 (1966).
 ${ }^{2}$ November 2004 prices, from Chemical Market Reporter (Schnell Publishing Co.), 265, 23 (May 17, 2004). Also see www.chemweek.com/ and www.icislor.com

[^1]: ${ }^{3}$ Reaction orders and rate constants were estimated from periscosity measurements for a bulk catalyst density of $1.2 \mathrm{~kg} / \mathrm{dm}^{3}$.

[^2]: ${ }^{4}$ R. Aris, Elementary Chemical Reactor Analysis (Upper Saddle River, N.J.: Prentice Hall, 1969).

