

1

Chapter 8

Puzzle Problem

Web P8-19_B What five things are wrong with this solution?

The van de Vusse reactions

$$2A \xrightarrow{k_3} D$$

$$A \xrightarrow{k_1} B + C$$

take place in the gas phase and all follow elementary rate laws. Pure A enters a 100-dm³ PFR at a volumetric flow rate of 10 dm³/min at a concentration of 3 mol/m³.

 $k_1 = 0.05 \text{ min}$

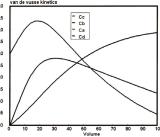
 $k_3 = 0.015 \text{ (dm}^3/\text{mol)/min}$

 $K_{\rm C} = 0.5 \, \mathrm{dm}^3/\mathrm{mol}$

Plot C_A , C_B , C_C , and C_D as a function of V.

Solution

Taking A as the basis of calculation for both reactions


$$A \xrightarrow{k_1} D/2$$

$$A \longrightarrow B + C$$

The equations for the Polymath solutions are shown below.

	Variable	Initial value	Minimal value	Maximal value	Final value
1	Ca	3.	0.4541998	4.381897	0.4541998
2	Cb	0	0	2.809564	1.340173
3	Cc	0	0	2.809564	1.340173
4	Cd	0	0	3.885973	3.885973
5	٧	0	0	100.	100.

4.5

- 1 d(Cc)/d(V) = .05*(Ca-Cb*Cc/2)
- 2 d(Cb)/d(V) = 0.05*(Ca-Cb*Cc/2)
- 3 d(Ca)/d(V) = 0.05*(Ca-Cb*Cc/2) -.015*Ca
- 4 d(Cd)/d(V) = 0.015*Ca
- 1) Line __ reads _____, should read _____ 2) Line ___ reads ______, should read _____
- 3) Line __ reads _____, should read _____

etc.

