Web Appendix A. 3

A. 3 Solutions to Differential Equations

A.3.A First-order Ordinary Differential Equations

Also see http://www.ucl.ac.uk/Mathematics/geomath/level2/deqn/de8.html

$$
\begin{equation*}
\frac{d y}{d t}+f(t) y=g(t) \tag{WA.3.A.1}
\end{equation*}
$$

Integrating factor $=\exp \left(\int f d t\right)$
Multiply through the integrating

$$
e^{\int f(y) d t} \frac{d y}{d t}+e^{\int f d t} y=e^{\int f d t} g(t)
$$

Collect term

$$
\begin{gathered}
d\left(\frac{y e^{\int f d t}}{d t}\right)=e^{\int f d t} g(t) \\
y e^{\int f d t}=\int g(t) e^{\int f d t} d t+K_{1}
\end{gathered}
$$

and divide by $e^{\int f d t}$

$$
\begin{equation*}
y=e^{-\int f d t} \int g(t) e^{\int f d t} d t+K_{1} e^{-\int f d t} \tag{WA.3.A.2}
\end{equation*}
$$

Example A.3-1 Integrating Factor for Series Reactions

$$
\begin{gathered}
\frac{d y}{d t}+k_{2} y=k_{1} e^{-k_{1} t} \\
\text { Integration factor }=\exp \int k_{2} d t=e^{-k_{2} t} \\
\frac{d y e^{k_{2} t}}{d t}=e^{k_{2} t} k_{1} e^{-k_{1} t}=k_{1} e^{\left(k_{2}-k_{1}\right) t} \\
e^{k_{2} t} y=k_{1} \int e^{\left(k_{2}-k_{1}\right) t} d t=\frac{k_{1}}{k_{2}-k_{1}} e^{\left(k_{2}-k_{1}\right) t}+K_{1} \\
y=\frac{k_{1}}{k_{2}-k_{1}} e^{-k_{1} t}+K_{1} e^{-k_{2} t} \\
t=0 \quad y=0 \\
y=\frac{k_{1}}{k_{2}-k_{1}}\left[e^{-k_{1} t}-e^{-k_{2} t}\right]
\end{gathered}
$$

A.3.B Coupled First-order Linear Ordinary Differential Equations with Constant Coefficients

Also see http://www.mathsci.appstate.edu/~sjg/class/2240/finalss04/Alicia.html.
Consider the following coupled set of linear first order ODE with constant coefficients.
(1) $\quad \frac{d x}{d t}=a x+b y \quad t=0 \quad x=x_{0}$
(2) $\quad \frac{d y}{d t}=c x+d y \quad t=0 \quad y=y_{0} \quad\left[\begin{array}{l}\frac{d x}{d t} \\ \frac{d y}{d t}\end{array}\right]=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$

Or in Matrix Notation

The solution to these coupled equations is

$$
\begin{equation*}
x=A e^{-\alpha t}+B e^{-\beta t} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
y=K_{1} e^{-\alpha t}+K_{2} e^{-\beta t} \tag{4}
\end{equation*}
$$

where

$$
\alpha, \beta=-\left[\frac{\operatorname{Tr} A \pm \sqrt{\operatorname{Tr} A^{2}-4 \operatorname{Det} A}}{2}\right], \operatorname{Tr} A=a+d, \quad \operatorname{Det} A=a d-b c
$$

From the initial conditions

$$
\begin{gathered}
t=0 \quad x=x_{0} \text { and } y=y_{0} \text { we get } \\
x_{0}=A+B
\end{gathered}
$$

and

$$
y_{0}=K_{1}+K_{2}
$$

differentiating equations (3) and (4) and evaluating the derivative at $\mathrm{t}=0$

$$
\begin{aligned}
& \left.\frac{d x}{d t}\right)_{t=0}=-\alpha A-\beta B=a x_{0}+b y_{0} \\
& \left.\frac{d y}{d t}\right)_{t=0}=-\alpha K_{1}-\beta K_{2}=c x_{0}+d y_{0}
\end{aligned}
$$

We have four equations and four unknowns (The arbitrary constants of integration $\mathrm{A}, \mathrm{B}, \mathrm{K}_{1}$ and K_{2}) so we can eliminate these arbitrary constants of integration.

If $y_{0}=0$ then the solution takes the form

$$
\begin{gathered}
x=x_{0}\left[\frac{(a+\alpha) e^{-\beta t}-(a+\beta) e^{-\alpha t}}{\alpha-\beta}\right] \\
y=\frac{c x_{0}}{\alpha+\beta} e^{-\beta t}-\frac{c x_{0}}{\alpha+\beta} e^{-\alpha t}
\end{gathered}
$$

