COMSOL LEP tutorial for Startup of a CSTR (Chapter-13)

Step 1: Open chapter 13 and click on COMSOL tab present in the bottom of the page

\leftarrow \rightarrow C $\textcircled{0}$ umich.edu/~elements/	ie/13chap/obj.html
Elements of Chemical Reaction Eng 5th Edition	ineering Home Essentials of Chemical Reaction Updates and FAQs Engineering
тос	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Appendices
BY CHAPTER HIDE → BY CHAPTER HIDE → Constant of the second sec	 Chapter 13: Unsteady State Nonisothermal Reactor Design Objectives After completing Chapter 13 of the text and associated website material, the reader will be able to: Analyze batch reactors and semibatch not operated isothermally. Explain why a reactor exploded when its charge was increased by a factor of three. Analyze perturbations in temperature and presence for CSTRs being operated at steady state and describe under what conditions the reactors can be unsafe (safety). Analyze multiple reactions in batch and semibatch reactors not operated isothermally.
Games	Learning Resources Living Example Problems Expanded Material Youtube Videos
U OF M HIDE	Professional Reference Shelf Additional Homework Problems Web Modules
 Asynchronous Learning ChE 344 ChE 528 	Learn ChemE Videos
	Self test A. Exercises B. i>clicker questions

Step 2: The following page will open. Click on "How to access COMSOL"

Elements of Chemical Reaction Eng 5th Edition	ineering					
TOC 1 2 3	4 5	6 7 8	9 10 11 12	13 14 15 10	5 17 18 Appendices	
BY CHAPTER HIDE	COMSOL	LEP tutorial	₽			

Step 3: You will see a new page with instruction on how to access COMSOL library. Click "Here"

Step 4: This will take you to COMSOL Server. If you are a student at the University of Michigan, please use your Uniqname and password. If you are not a University of Michigan student, use

password : guest	,
llaarnama	
guest	
Password	
•••••	
Log in to COMSOL Server	

Step 5: This will open up COMSOL library where you can see many COMSOL files to solve chemical reaction engineering problems. *Find "Startup of a CSTR Part-1"*. Click on "Run in browser" to start the application

			Log Out
guest guest	Concentrations of A and B Dr row & grow	H Jacket A+B → C	
Application Library	Run in browser 👻	Run in browser	Run in browser 👻
🗢 Your Settings 🛛 🔇	 i ☆ 	(i) ★	(1) ☆
	Nonisothermal Plug Flow Reactor-Heat Exchange	Startup of a CSTR Part-1	Startup of a CSTR- Part 2

You will see that following window opens which has input parameters, description, graphical features (Concentration and Temperature profiles) and a few buttons. Currently Concentration profile is visible.

Step 6: Click on Temperature tab to view Temperature profile

File	
	Security Concentration Temperature Q <td< th=""></td<>
$\kappa_1 = \mu_1 \exp\left(\frac{-R_gT}{R_gT}\right)$	338
	0 2000 4000 5000 8000 10000 12000 14000 Time (h)

Step 7: Under Input section on the left hand side, you can view and change any parameter values. Let's change a parameter and see the effect on the profile. Change the Initial reactor temperature from 340 K to 310 K. After you are done, click on Compute button (=) present above the Input parameters

<u>Caution:</u> The y axis is dynamic and scale changes with respect to the values. Make sure to look at both scale and graph

Step 8: Now check the Concentration and Temperature profiles. The following graphs will be obtained. You can check that the concentration profile now has more oscillations before reaching steady state

The following is the temperature profile that you will obtain. You can see that at lower temperature, it takes more time to reach the steady state value

Step 9: Now if you want to re-set all the parameter values to its initial values, click on "Reset to Default button(^{'D}) present on the menu bar. Click on this button to reset the value of Temperature. To update the graph, click on Compute button. Each time you change a variable, click Compute

Step 10: Now let's consider a case where there is no coolant flow. Enter the Cooling fluid molar flow rate to be 0 mol/s and click compute to see its effect on profile

The following graph will be obtained for Concentration profile. You can see that reactant concentration drops instantaneously without coolant flow

Following is the temperature profile you will obtain. It can be seen that temperature also rises suddenly without coolant flow

nput and Description			Result	S					
Compute			Concer	ntration (Te	mperature				
 Input 						-			
Activation energy, E1:	75358	J/mol	æ	ચ છાર હ		<u>.o</u>			10
Feed stream temperature:	297	К							
Initial reactor temperature:	340	К		370 P			 	 	
Cooling fluid temperature:	289	К		368 - 🧸	- And a start of the				
Cooling fluid molar flow rate:	0	mol/s		366 -					
Heat transfer coefficient:	8441	J/(s-K)		364 -					
Initial concentration, propylene oxide:	1400	mol/m³		362					
 Process Reaction 				360					
Hydrolysis of propylene ovide in to pro	nylene alvcol		¥	358 -					
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		ture	356 -					
4 + H ₂ O + H ₂ O + HO	OH		era	354					
`	``		emp	352					
Reaction rate expression:			F	350					
$r_1 = -k_1 c_{PrO}$				348					
Rate constant from Arrhenius equation				346					
$k_1 = A_1 \exp\left(-\frac{E_1}{E_1}\right)$				344					
$\left(R_{g} \right)$				342					
				0.40					

Step 11: Now, you can change any listed parameter value and check its effect on profiles. Make sure to click Compute button after you change a variable.

Step 12: If you have COMSOL installed on your computer, then you can also download the complete COMSOL file (with user interface)

- a) Go to file on toolbar and click on Save button. This will download the file at the bottom of the browser (if you are using Chrome)
- b) Click on the downloaded file to open the application

About			Result	s								
Compute			Concer	ntration Tempe	ature							
• Input				o. o. m.l.								
Activation energy, E1:	75358	J/mol	et i	ચ છે છે છે								
Feed stream temperature:	297	К										
nitial reactor temperature:	340	К		1400 日								
cooling fluid temperature:	289	К										
ooling fluid molar flow rate:	126	mol/s		1300								
leat transfer coefficients	8441	J/(s-K)		1200								
nitial concentration, propylene oxide:	1400	mol/m ^a		1200								
Process Reaction				1100-								
Hydrolysis of propylene oxide in to pro	ovlene alvcol			1000								
A . 140 11.50. HO	Кон		(fimi)o	900-								
Reaction rate expression:			no (m	800-								
$r_1 = -k_1 c_{PPD}$			u j	200								
late constant from Anhenius equation			trat	700								
$k_1 = A_1 \exp\left(-\frac{\ell_1}{R_0T}\right)$			oncen	600 -								
			0	500 -	_	_		_				_
				400 -	1							
				300 -								
					/							
				200								
				100								
				0	2000	400	0	6000	8000	10000	12000	14000

Show all

Untitled.mph

 \sim

Step 13: You can also open a pdf documentation which details the reactor model and a step-by-stepprocedure to create this COMSOL module from scratch. Click on PDF button present on the menu bar

This will open up a new tab with PDF file which you can also download

Step 14: Now go back to Library and Find "*Startup of a CSTR- Part 2*". Click on "Run in browser" to start the application. This application contains parametric graph of Concentration vs Temperature

The application will look like this when it opens. Again you can see that there are Input parameters, buttons and graphs. Currently the graph shows parametric plot of Concentration vs Temperature at different initial values of PrO concentration and Reactor temperature

Step 15: Click on "Temperature vs Time" tab to obtain Temperature profile at different initial conditions of PrO concentration and Reactor temperature

Step 16: Let's change a parameter and see the effect on the profile. Suppose Practical stability limit is 350 K and you want to size the reactor so that maximum reactor temperature is below this limit. Change the Tank volume to 0.8 m³ from 1.89 m³. After you are done, click on Compute button (=) present above the Input parameters

<u>Caution:</u> The y axis is dynamic and scale changes with respect to the values. Make sure to look at both scale and graph

The following graph will be obtained for "Concentration vs Temperature". It can be seen that reactor temperature doesn't cross the Practical stability limit at Tank volume=0.8 m3

Step 17: Now let's change another variable and see the effect on profiles. Change the feed stream temperature to 350 K from its initial value of 289 K and then click Compute

The following graph will be obtained for Concentration vs Temperature

The following graph will be obtained for Temperature vs Time

Step 18: Again, you can download the COMSOL file as was shown in **Step 12**. To open PDF documentation to view the detail of the COMSOL modeling steps, click on PDF button as shown below

This will open up a new tab with PDF file which you can download also

