Tutorial for running COMSOL files from COMSOL website

Step 1: Open your browser (Chrome/explorer etc.) and enter the below link

https://www.comsol.com/books/elements-of-chemical-reaction-engineering-5th/models

You will see that following page opens

\leftrightarrow \rightarrow C (1) https://www.comsol.com/books/elements-of-chemical-reaction-engineering-5th/models	☆ :
Products Video Gallery Webinars Support Contact	Q
Elements of Chemical Reaction Engineering: COMSOL Models	
The textbook Elements of Chemical Reaction Engineering by H. Scott Fogler provides a complete overview of the principles of chemical reaction engineering in a structure that enables students to solve problems through reasoning rather than memorization. The fourth edition of the book on bioreaction engineering and industrial chemistry and includes a wide variety of industry applications.	focuses
The textbook features model examples that have been formulated and solved using the COMSOL Multiphysics [®] software. Each problem is des and summarized in the documentation, which also includes step-by-step instructions to reproduce the corresponding models and derive the me equations in detail.	cribed odel
In order to reproduce these COMSOL models, a valid COMSOL Multiphysics license is required. The license allows you to run the models featu this page. In some cases, the Chemical Reaction Engineering Module license may also be required. Check with your teacher or teaching assistant if such licenses are available on your campus computer system.	red on nt to see
There are five different COMSOL Multiphysics model examples included in <i>Elements of Chemical Reaction Engineering</i> . We will first summarize the examples and then explore them in greater detail below.	iese
COMSOL Model Summaries	
Tubular Reactor	1
The Tubular Reactor model investigates how radial variations in composition and temperature affect the performance and operation of tubular reactors. This exercise contains four separate submodels:	
Isothermal reactor	apod ow
Nonisothermal adiabatic reactor Nonisothermal reactor with isothermal cooling lacket	c
Nonisothermal reactor with nonisothermal cooling jacket	яту 5

Step 2: You will find that there are many COMSOL exercises available to download. Scroll down the page and find "**Tubular Reactor Exercise Downloads**". Click on "Tubular Reactor with Nonisothermal cooling Jacket" under this section

Tubular Reactor Exercise Downloads

Download the latest versions of the COMSOL Multiphysics files for the application and the embedded model:

- Tubular Reactor
- Multicomponent Tubular Reactor
- Tubular Reactor with Nonisothermal Cooling Jacket

Step 3: You will see that the following page opens. Click on Download the application files. Currently you can't download any COMSOL file (.mph file). To access any COMSOL files, you need to have a COMSOL account which can be created for *FREE*. Click on "COMSOL Access" present at the bottom of the page

Step 4: The following page will appear. If you already have a COMSOL account then move to Step 6. If you don't have an account, then click on "Create an Access Account" to create one

Comsol	_ Access		
Log In Create an	n Access Account Forgot password?		
Email: Password:			
	Remember me Log In		

Step 5: The following page will appear where you need to provide few details and create a password. Fill in the details and submit. You will receive an email from COMSOL with an activation link. Click on the link to activate your COMSOL account

Contact Information	
First Name*	
Last Name*	
Company/University*	
Title	
Department	
Address*	
City*	
Country*	T
State/Province	
Zip Code*	
Phone*	
Fax	
Email*	
COMSOL, Inc. is committed t its customers and visitors to i concerning our privacy policy	o protecting the privacy of ts websites. Details may be found here.
Password Information	
Password*	
Confirm Password*	

Log In	Create an	Access Account	Forgot password?
	Email:	mtikmani@umich.edu	1
	Password:	Remember me	
		Log In	

Step 6: After you have created your account, Log In with your registered Email Id and password.

Step 7: This will again open up the same page as was obtained in Step 3. However, now you can download any COMSOL file. Click on "tubular_reactor.mph-3.68 MB" to download the file. The file will get downloaded at the bottom of the browser

	Tubular Reactor with Nonisothermal Cooling Jacket
	Chemical engineering students can model a nonideal tubular reactor, including radial and axial variations in temperature and composition, and investigate the impact of different operating conditions with this easy-to-use app. The process described by the Tubular Reactor with Nonisothermal Cooling Jacket app is the exothermic reaction of propylene oxide with water to form propylene glycol, assuming first-order reaction kinetics.
	The reactor also contains a cooling jacket, and the application consists of an energy and material balance. The student can change the activation energy of the reaction, the thermal conductivity, and the heat of reaction to investigate a variety of scenarios.
	The resulting solution gives the axial and radial reaction conversion as well as the temperature profile.
	Suggested Products Download the application files
	COMSOL 5.2a COMSOL 5.2 COMSOL 5.1
	models.mph.tubular_reactor.pdf - 0.53MB
	tubular_reactor.mph - 4.38MB (includes app design)
	tubular reactor.mph - 3.68MB
	tubular_reactor_parameters.txt - OMB
	tubular_reactor_variables.txt - OMB
tubular reactor.mph	

Step 8: Click on the downloaded file. You will see that your model opens up in COMSOL. Click on the various buttons present under Model Builder to view 1D, 2D or 3D profiles for Temperature, Concentration and Conversion.

🍯 🗅 📂 🔒 🔣 🕨 🐄 🗗 🛱	i 🗇 🖳 🕅 🖪 • I	tubular_reactor.mph - COMSOL Multiphysics
File	ry Materials Physics Mesh Study Results C	Concentration (tds) 1
Image: Plot Plot Plot Plot Plot Plot	the the term of t	Evaluate Along Normal -① Cut Line Direction Cat Line Direction Cat Line Surface Normal Cat Line Surface Normal / First Point for Cut Line Second Point for Cut Line First Point for Cut Plane Normal Mage / Second Point for Cut Line First Point for Cut Plane Normal Select Export
Model Builder • ← → ↑ ↓ ↓ ↓ ↓	Settings 3D Plot Group Plot Label: Concentration (tds) 1 Data set: Revolution 2D Title Plot Settings View: Automatic Show hidden entities Propagate hiding to lower dimensions Propagate hiding to lower dimensions Plot data set edges Color: Black Frame: Material (r, phi, z) Color Legend Show maximum and minimum values Backter	Graphics Q Q R
	Text color: Black	Consol: Multiphysics 3.2.1.12 Opened file: tubular_reactor.mph
	938 MB 1064 MB	

Step 10. Click on Conversion, 1D under Model Builder to view Conversion 1D Plot

Step 11: Click on Parameters under "Model Builder" to view and change any parameter values

Model Builder 🔹 🖡	Setting	S		~		
$\leftarrow \rightarrow \uparrow \downarrow \ \fbox{\ } \forall = \bullet \ \textcircled{\ } \forall = \bullet \ \textcircled{\ } \bullet$	Parameters					
 tubular_reactor (1).mph (root) Global Definitions 	 Parame 	eters				
Pi Parameters	"Name	Expression	Value	Description		
Materials	E	75362[J/mol]	75362 J/mol	Activation energy		
Component 1 (comp1)	A	16.96e12[1/h]	4.7111E9 1/s	Frequency factor		
500 Study 1	ke	0.559[W/m/K]	0.559 W/(m·K)	Thermal conductivity		
A we Results	Diff	1e-9[m^2/s]	1E-9 m²/s	Diffusion coefficient		
V IIII Data Sets	Uk	1300[W/m^2/K]	1300 W/(m ² ·K)	Overall heat-transfer co		
8.85 Perived Values	dHrx	-84666[J/mol]	-84666 J/mol	Heat of reaction		
Tables	Т0	312[K]	312 K	Inlet temperature		
Temperature	Ta0	277[K]	277 K	Inlet temperature of the		
Concentration (tds) 1	v0	v_w0+v_po0+v	6.2995E-5 m³/s	Total flow rate		
Temperature, 3D (ht)	cA0	n_po0/v0	1587.4 mol/m³	Propylene oxide concer		
Isothermal Contours (ht)	cB0	n_w0/v0	43210 mol/m³	Water concentration, in		
Temperature cooling jacket	cMe0	n_m0/v0	2744 mol/m³	Methanol concentration		
Conversion	Cp0	(Cp_po*cA0+C	3874.5 J/(kg·K)	Heat capacity at inlet		
🔺 🔷 Temperature, 1D	rho0	(cA0*M_po+cB	957.92 kg/m³	Density at inlet		
🔁 Line Graph 1	Ra	0.1[m]	0.1 m	Reactor radius		
✓ Conversion, 1D	L	1[m]	1 m	Reactor length		
C Line Graph 1	M_po	58.095[g/mol]	0.058095 kg/	Molar weight, propylen 👻		
Ve Export	٠					

Step 12: Let's change a parameter and see the effect on the profile. Change the Diff value to 1e-6 from 1e-9. After you are done, Click on Compute present under Home toolbar or Study toolbar

Compute Study 1 → Continue Compute Study Compute Study Study Study	Show Default Solver Solver	Study Steps - Sweep	f(x) ic Function Ma Sweep Sv	terial Study Optimizat Reference Study Step
Model Builder ← → ↑ ↓ ☜ • ⅲ+ ⅲ •	 Setting: Parameter 	S rs		~ I
4 tubular_reactor (1).mph (root)	🔻 Parame	eters		
Pi Parameters	** Name	Expression	Value	Description
Materials	E	75362[J/mol]	75362 J/mol	Activation energy 🔺
Component 1 (comp1)	A	16.96e12[1/h]	4.7111E9 1/s	Frequency factor
Study 1	ke	0.559[W/m/K]	0.559 W/(m·K)	Thermal conductivity
Kesults	Diff	1e-6[m^2/s]	1E-6 m²/s	Diffusion coefficient
Data Sets	Uk	1300[W/m^2/K]	1300 W/(m²·K)	Overall heat-transfer co [≡]
8.85 Perived Values	dHrx	-84666[J/mol]	-84666 J/mol	Heat of reaction
Tables	T0	312[K]	312 K	Inlet temperature
Temperature	Ta0	277[K]	277 K	Inlet temperature of the
Concentration (tds) 1	√0	v_w0+v_po0+v	6.2995E-5 m³/s	Total flow rate
Temperature, 3D (ht)	cA0	n_po0/v0	1587.4 mol/m³	Propylene oxide concer
Isothermal Contours (ht)	cB0	n_w0/v0	43210 mol/m ³	Water concentration, in
Temperature cooling jacket	cMe0	n_m0/v0	2744 mol/m ³	Methanol concentration
Conversion	Cp0	(Cp_po*cA0+C	3874.5 J/(kg·K)	Heat capacity at inlet
🔺 🝼 Temperature, 1D	rho0	(cA0*M_po+cB	957.92 kg/m³	Density at inlet
🖄 Line Graph 1	Ra	0.1[m]	0.1 m	Reactor radius
▲ ~ Conversion, 1D	L	1[m]	1 m	Reactor length
🗠 Line Graph 1 隨 Export	M_po	58.095[q/mol]	0.058095 kg/	Molar weight, propylen *

Step 13: Click on Temperature,1 D to view Temperature profile when diffusivity is decreased. The following graph will be obtained

Now click on Conversion, 1D to view Conversion profile

Step 14: Similarly, change other parameters and analyze the change in Temperature and Conversion profiles

9 🗅 📂 🖵 🗏 🕨 🗇 🖷 👘	🛱 🏢 😨 🔯 🗟 • 📔 👘 🖬 🖬 tubular_re	eactor.mph - COMSOL Multiphysics
File Home Definitions Geom A Image: Component 1 (component 1 (co	etry Materials Physics Mesh Study Results 1) Definitions Geometry Materials Materials Materials Materials Materials Materials Mesh Study Results Transport of Diluted Species (transport of Diluted Sp	rds) ↓ ■ Build Mesh = Compute
Model Builder	Settings • # Cut Line 2D Plot Label: Cut Line 2D 1	Graphics Convergence Plot 1 Convergence Plot 2 Image: Convergence Plot 2 Q Q Image: Convergence Plot 2 Image: Convergence Plot 2 Radial Conversion Profiles Image: Convergence Plot 2 Image: Convergence Plot 2
Pi Parameters Image: Materials Image: Component 1 (comp1) Image: Study 1 Image: Component 1 (comp1) Image: Study 1 Image: Component 1 (comp1) Image: Component 1 (comp1) Image: Comp1) Image: Comp1) Image: Comp1) Image: Comp1) Image: Comp1) Image: Comp1) Image: Comp1) Image: Comp1) <td>Catanee D1 Data Data set: Study 1/Solution 1 (sol1) Line Data Line entry method: Two points F: Z: Point 1: 0 0 m Point 2: Ra 0 m</td> <td>0.95 0.9 0.95 0.85 0.75 0.75 0.65 0.65 0.55 0</td>	Catanee D1 Data Data set: Study 1/Solution 1 (sol1) Line Data Line entry method: Two points F: Z: Point 1: 0 0 m Point 2: Ra 0 m	0.95 0.9 0.95 0.85 0.75 0.75 0.65 0.65 0.55 0
Temperature Concentration (tds) 1 Temperature, 3D (ht) Stohermal Contours (ht) Stohermal Contours (ht) Conversion	Bounded by points Additional parallel lines Distances: 0.5*L1*L m im Snap to closest boundary	0.3 0.25 0.2 0.15 0.1 0.1 0.05
 Temperature, 1D Conversion, 1D Export Reports 	> Advanced	0 0.02 0.04 0.06 0.08 Radial Location (m) Messages Progress Log Table

Step 15: To view the axial profiles, click on cut Line 2D 1 present under Data sets

Change point 1 and 2 as shown below. Vary z from 0 to L keeping r fixed at 0

🍯 🗅 📂 🔲 🔣 🕨 🕇 🕈 👘 👘	🔁 🗓 🔣 🕅 🖳 - I	tubular_reactor.	mph - COMSOL Multiphysics	
File Home Definitions Geom	etry Materials Physics Mesh	Study Results		?
Application Builder Application	1) • Definitions Geometry Materials	Fransport of Diluted Species (tds) • Add Physics Add Multiphysics Physics	■ Build Mesh = Compute ~ Temperature ▲ Mesh 1 • ~ Study 1 • ▲ Add Plot Grow Mesh Study Results	, 1D • up • Layout
Model Builder ← → ↑ ↓ ☞ ↓ □↑ □↓ □ ↓ ▲ ⊕ Global Definitions Pi Parameters □™ □↓ □↓ □↓	Settings Cut Line 2D Coll Plot Label: Cut Line 2D 1	~ #	Graphics Convergence Plot 2 Convergence	Plot 1 - #
 Component 1 (comp1) Study 1 Results Tota Sets Study 1/Solution 1 (soll) 	▼ Data Data set: Study 1/Solution 1 (sol1) Tine Data		340 335 330 225	
tudy I/Solution Store I (s	Line entry method: Two points r: Point 1: 0 Point 2: 0	z: 0 m L m	¥ 320 115 315 310 305	// // // // //
Tables Temperature Temperature Temperature, 3D (ht) Stockstein (ht) Temperature, 3D (ht) Temperature cooling jacket Conversion	Bounded by points Additional parallel lines Distances: 0.5*L1*L Snap to closest boundary	m Ind	300 295 290 285 280 280	
 Temperature, 1D Conversion, 1D Export Reports 	Advanced		0 0.02 0.04 0.06 Radial Location (n Messages Progress Log Table	0.08 n) マ ∓ ×

Step 16: Click on Temperature,1D to obtain axial temperature profile. Change the graph and axis titles as shown below

Click on Conversion,1D to obtain axial conversion profile. Change the graph and axis titles

Step 17: To change the flow conditions from laminar flow to plug flow, expand Definitions and click on Variables 1. You will see a list of defined variables. We want to change the expression for velocity (uz)

Change the expression of uz by entering "u0" in the text field. Click on Compute Button

🏴 🖹 🍃 🔒 🔣 🕨 🕇 🕈 👘 👘		Eq. •	-	tubula	r_react	or.mph - COMSOL M	ultiphysics	A-1442		x
File V Home Definitions Geom	etry Materia	ls Physics Mes	h Stud	y Results						?
Application Model	1) • Definition	Geometry	Frar S Add S S Add	nsport of Diluted Specie Physics Multiphysics Physics	s (tds)	Build Mesh Mesh 1 Mesh	= Compute Study 1 • Add Study Study	Conversion, 1D	Layout	
Model Builder ← → ↑ ↓	Settings Variables Label: Variat Geometric ent Geometric ent Active	iles 1 ic Entity Selection ity level: Entire mod	el	•	₽ C @ 	Graphics (Q, (9, ⊕ ∰) ∞ ● ⓑ ≇ 1- 0.9- 0.8- 0.7-	& ↓ •			
 Transport of Diluted Speci [™] Transport of Diluted Speci [™] Heat Transfer in Fluids (<i>ht</i>) [™] Out Coefficient Form Boundary [™] Multiphysics [™] Multiphysics	"Name u0 ' u2 xA cB c cC r A Q cpm	Expression .0/(pi*Ra^2) .0 (cA0-cA)/cA0 E80-cA0*xA CA0*xA A*exp(-E/R_const/T) (-rA)*(-dHrx) (Cp_po*cA+Cp_m*c	Unit m/s Da/s mol/m ³ mol/(m W/m ³ J/(kg·K)	Description Average flow rate Laminar flow profile Conversion species. Concentration speci Concentration speci Reaction rate Heat production ter Mixture specific hea	E	0.6 0.5 0.4 0.3 0.2 0.1 0		r=0		

Step 18: Now, again click on Temperature, 1 D graph to obtain temperature profile for plug flow

Click on Conversion,1 D graph to obtain conversion profile for plug flow

🔍 🗅 📂 🔒 🔍 🕨 ち ぐ 暗 后	🖷 📋 🔣 🕅 🔍 - I 💦 tubular_r	reactor.mph - COMSOL Multiphysics			
File	etry Materials Physics Mesh Study Results Convers	sion, 1D			
Plot Plot Plot Drot Plot	Image: Table Histogram Particle Ray Nyquist Total Factor Total Factor	Tation Filter 1D Animation Image - Attributes Export			
Model Builder	Settings 1D Plot Group @ Plot Label: Conversion, 1D • Data Data set: Cut Line 2D 1 • Title Title type: Manual Color: Black • Color: Black • Title Radial Conversion Profiles 	Graphics Convergence Plot 1 Convergence Plot 2 • 0 Q Q (g) E III E O O E Radial Conversion Profiles 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9			
 ✓ Conversion, 1D ▷ Line Graph 1 Export Reports ✓ III 	x-axis label: Radial Location (m) y-axis label: Conversion Axis	Versages Progress tog rate Opened file: tubular_reactor.mph Number of degrees of freedom solved for: 10552 (plus 504 internal DOFs). Number of degrees of freedom solved for: 20903 (plus 1008 internal DOFs).			
999 MB 1098 MB					

Step 19: Now obtain axial profile for plug flow reactor in a similar way as was done for laminar flow

Step 20: To view the mass transfer equations being used by COMSOL, expand Transport of Diluted Species (tds) and click on Transport Properties 1

Step 21: To view the heat transfer equations being used by COMSOL, expand Heat Transfer in Fluids (ht) and click on Fluid 1

Step 22: To view the equations for Coolant flow being used by COMSOL, expand Coefficient Form Boundary PDE (cb) and click on Coefficient Form PDE1

Step 23: To view the mass transfer boundary conditions, expand the "Transport of Diluted species" and view the various tabs which include boundary conditions and initial values. If you click on "No Flux 1" you can find the equation that is applied (under equation) and the boundary on which this equation is applied (dark blue color on the geometry)

Step 24: Similarly, you can check the boundary conditions for heat transfer and coolant flow