<u>COMSOL LEP tutorial for Nonisothermal plug flow reactor with</u> adiabatic operation

Step 1: Open chapter 12 and click on COMSOL tab present in the bottom of the page

\leftrightarrow \rightarrow C $\textcircled{0}$ umich.edu/~elements/5	e/12chap/obj.html
Elements of Chemical Reaction Engi 5th Edition	neering Home Home Chemical Reaction Engineering
TOC 1	2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Appendices
BY CHAPTER HIDE	Chapter 12: Steady-State Nonisothermal Reactor Design: Flow Reactors with Heat Exchange Objectives After completing Chapter 12 of the text and associated website material, the reader will be able to: Describe the algorithm for CSTRs, PFRs, and PBRs that are not operated isothermally. Size nonadiabatic CSTRs, PFRs, and PBRs. Describe and compare the different traits for PFRs with the following different heat exchange taking place Adiabatic Constant ambient exchange temperature Counter current heat exchange Counter current heat exchange Counter current heat exchange
U OF M HIDE	extinction temperatures.
Asynchronous Learning ChE 344 ChE 528	Analyze multiple reactions carried out in CSTRS, PERS, and PBRS which are not operated isothermally in ord to determine the concentrations and temperature as a function of position (PFR/PBR) and operating variables Learning Resources Living Example Problems Expanded Material Youtube Videos Professional Reference Shelf Additional Homework Problems Web Modules COMSOL Learn ChemE Videos

Step 2: The following page will open. Click on "How to access COMSOL"

Step 3: The following page will open. Click "Here"

Step 4: This will take you to COMSOL Server. If you are a student at the University of Michigan, please use your Uniqname and password. If you are not a University of Michigan student, use

password : guest	7
Username	_
guest Password	
Log in to COMSOL Server	

Step 5: This will open up COMSOL library where you see many COMSOL files to solve chemical reaction engineering problems. Find "Nonisothermal Plug Flow Reactor-Adiabatic". Click on "Run in browser" to start the application

You will see that following window opens which has input parameters, description, graphical features and a few buttons. You can see the conversion profile on the right side of the page

File	
5	
Input and Description Compute 	Results Conversion Temperature Reaction Rate
 ✓ Input Inlet volumetric flow: 2 m³/s Inlet mole fraction, A: 1 mol/mol Inlet concentration, A: 18.8 mol/m³ 	Q Q ∯ ⊡ Ⅲ ≡ ∅
Activation energy, E₁: 284.5e3 J/mol Inlet temperature: 1035 K ▼ Process Reaction	24 22 20
Gas-phase production of acetic anhydride (ketene) from acetone: $CH_3 COCH_3 \rightarrow CH_2 CO + CH_4$ (A) (K) (M) Acetone Ketene Methane	18 (g) 16 (d) 14 (c) 14 (c) 12 (c) 12 (c) 12 (c) 10 (c) 10 (c
Reaction rate expression: $r_1 = k_1 c_A$ Rate constant from Arrhenius equation: $k_1 = A_1 \exp\left(-\frac{E_1}{R_gT}\right)$	8 6 4 2 0 0 1 2 3 4 5 Beactor volume (m ³)

Step 6: Click on	Temperature	tab to view	Temperature graph
------------------	-------------	-------------	-------------------

File	
Input and Description Compute 	Results Conversion Temperature Jeaction Rate
✓ Input Inlet volumetric flow: 2 m ³ /s Inlet mole fraction, A: 1 mol/mol Inlet concentration, A: 18.8 mol/m ³	
Activation energy, c1. 284.5e3 J/mol Inlet temperature: 1035 K Process Reaction	1020 - 1010 -
Gas-phase production of acetic anhydride (ketene) from acetone: $CH_3 COCH_3 \rightarrow CH_2 CO + CH_4$ (A) (K) (M) AcetoneKeteneMethane	1000 990 990 980 970 960 960 950
Reaction rate expression: $r_1 = k_1 c_A$ Rate constant from Arrhenius equation: $k_1 = A_1 \exp\left(-\frac{E_1}{R_g T}\right)$	940 930 920 910 900 0 1 2 3 4 5 Reactor volume (m ³)

Click on Reaction Rate tab to view graph of reaction rate

Step 7: Under Input section on the left hand side, you can view and change any parameter values. Let's change a parameter and see the effect on the profile. Change the Inlet temperature to 1200 K from 1035 K. After you are done, click on Compute button (=) present above the Input parameters

Step 8: Now check the Conversion and Temperature profiles. The following graph is obtained for conversion. You can see that conversion has increased at higher temperature

File	
Input and Description Compute Compute Inlet volumetric flow: 2 m ³ /s Inlet mole fraction, A: 1 mol/mol Inlet concentration, A: 18.8 mol/m ³ Activation energy, F_1 : 284.5e3 J/mol Inlet temperature: 1200 K Process Reaction Gas-phase production of acetic anhydride (ketene) from acetone: $CH_3 COCH_3 \rightarrow CH_2 CO + CH_4$ (A) (K) (M) Acetone Ketene Methane Reaction rate expression: $r_1 = k_1 c_A$ Rate constant from Arrhenius equation: (f_2)	Results
$k_1 = A_1 \exp\left(\frac{-k_1}{R_g T}\right)$	0 1 2 3 4 5 Reactor volume (m ³)

The following graph is obtained for Temperature profile which shows that temperature has increased

File	
5 2	
Input and Description Compute Input Inlet volumetric flow: 2 m ³ /s	Results Conversion Cemperature Jeaction Rate
Inlet mole fraction, A: 1 mol/mol Inlet concentration, A: 18.8 mol/m ³ Activation energy, F_1 : 284.5e3 J/mol Inlet temperature: 1200 K Process Reaction Gas-phase production of acetic anhydride (ketene) from acetone: $CH_3 COCH_3 \rightarrow CH_2 CO + CH_4$ (A) (K) (M) Acetone Ketene Methane	200 1200 1180 1160 1140 1120 2 1100 2 1000 2 1
Reaction rate expression: $r_1 = k_1 c_A$ Rate constant from Arrhenius equation: $k_1 = A_1 \exp\left(-\frac{E_1}{R_g T}\right)$	2 1020 1000 980 960 940 920 0 1 2 3 4 5 Reactor volume (m ³)

Step 9: Now if you want to re-set all the parameter values to its initial values, click on "reset to default

button([>]). Click on this button and you will find that it resets the value of Temperature. To update the graph, click on Compute button. Each time you change a variable, click Compute

Step 10: Now let's consider a case where inert is present in the inlet. Change the inlet mole fraction of A to 0.1 instead of 1 and click compute to see its effect on profile.

The following graph will be obtained for conversion. You can see that with the presence of Inert, conversion has increased to more than 50%

Click on Reaction rate graph. The following graph will be obtained for reaction rate which shows reaction rate has increased

Step 11: Now, you can change any listed parameter value and check its effect on profiles. Make sure to click Compute button after you change a variable.

Step 12: If you have COMSOL installed on your computer, then you can also download the complete COMSOL file (with user interface)

- a) Go to file on toolbar and click on Save button. This will download the file at the bottom of the browser (if you are using Chrome)
- b) Click on the downloaded file to open the application

Step 13: You can also open a pdf documentation which details the reactor model and a step-by-stepprocedure to create this COMSOL module from scratch. Click on PDF button present on the menu bar

File	
Input and Description	Results Conversion Temperature Reaction Rate
Compute Compute Inlet volumetric flow: 2 m ³ /s Inlet mole fraction, A: 1 mol/mol Inlet concentration, A: 18.8 mol/m ³ Activation energy, E_1 : 284.5e3 J/mol Inlet temperature: 1035 K Process Reaction Gas-phase production of acetic anhydride (ketene) from acetone: $CH_3 COCH_3 \rightarrow CH_2 CO + CH_4$ (A) (K) (M) Acetone Ketene Methane Reaction rate expression:	Conversion Temperature Reaction Rate Q Q P <
$r_{1} = k_{1} c_{A}$ Rate constant from Arrhenius equation: $k_{1} = A_{1} \exp\left(-\frac{E_{1}}{R_{g}T}\right)$	6 4 2 0 0 1 2 3 4 5 Beactor volume (m ³)

This will open up a new tab with PDF file which you can also download

