
MATLAB Ordinary Differential Equation (ODE) solver for a simple example 

1. Introduction 

Differential equations are a convenient way to express mathematically a change of a dependent variable 

(e.g. concentration of species A) with respect to an independent variable (e.g. time). When writing a 

differential equation, one operate on the rates of change of quantities rather than the quantities 

themselves. This simplifies greatly the derivation of important relationships used by engineers around the 

world. However, switching from the rates of change to the values themselves (i.e. solving a differential 

equation) can be troublesome, especially when one deals with coupled (multiple) differential equations 

which have to be solved simultaneously. In many cases, an analytical solution does not exist and engineers 

have to rely on numerical (approximate) solutions.  

A special and very abundant group of differential equations is called ordinary differential equations 

(ODEs). In these equations, dependent variables are functions of one independent variable only, for 

example: 

−
𝑑𝑐𝐴

𝑑𝑡
= 𝑘𝑐𝐴 = 𝑓(𝑐𝐴) 

where the rate of change of the concentration of species A over time is directly proportional to the 

concentration of species A. One may also think of a system of ODEs, where two or more dependent 

variables exist, each of them expressed as a separate ODE, for example: 

{
−

𝑑𝑐𝐴

𝑑𝑡
= 𝑓1(𝑐𝐴, 𝑐𝐵)

−
𝑑𝑐𝐵

𝑑𝑡
= 𝑓2(𝑐𝐴, 𝑐𝐵)

 

Systems of equations similar to these shown above are very common in CRE problems, therefore it is 

advisable to learn how to solve them in order to predict the evolution of variables in time or space (e.g. 

length of the reactor). In this tutorial we will solve a simple ODE and compare the result with analytical 

solution. In another tutorial (see Ordinary Differential Equation (ODE) solver for Example 12-1 in 

MATLAB tutorials on the CRE website) we tackle a system of ODEs where more than one dependent 

variable changes with time. 

2. Developing a simple model with ODE to solve 

We will now develop a simple model of an isothermal 

CSTR (see Figure to the right) operated at non-steady 

state where a second-order, irreversible elementary 

reaction takes place: 

𝐴 + 𝐵 → 𝐶 

The rate constant is 𝑘 = 0.003
𝑚3

𝑚𝑜𝑙⋅𝑠
,  

the initial concentration of A, and B are: 

 𝑐𝐴0 = 10 𝑚𝑜𝑙 𝑚3⁄ , 𝑐𝐵0 = 15 𝑚𝑜𝑙/𝑚3. 

http://umich.edu/~elements/5e/tutorials/MATLAB_tutorial_12.1.pdf


The volumetric flow of reactants is 𝑣 = 𝑣0 = 0.5
𝑚3

𝑠
 and the active volume of the reactor is 𝑉 = 1000𝑚3. 

The CSTR initially (t=0) contains reactants A and B at concentrations specified before and the volumetric 

flowrate is constant. Concentration of product C is equal to zero at t=0.  

The task is to simulate the system and obtain concentration-time trajectories for all species: A, B, C. The 

exercise is to be solved in terms of concentration of the limiting reactant. 

We begin with the mole balance over species A which is the limiting reactant in this case: 

[𝐼𝑁] − [𝑂𝑈𝑇] + [𝐺𝐸𝑁𝐸𝑅𝐴𝑇𝐼𝑂𝑁] = [𝐴𝐶𝐶𝑈𝑀𝑈𝐿𝐴𝑇𝐼𝑂𝑁] 

𝐹𝐴0 − 𝐹𝐴 + (𝑟𝐴)𝑉 =
𝑑𝑁𝐴

𝑑𝑡
 

Furthermore, the rate law reads as: 

−𝑟𝐴 = 𝑘𝑐𝐴𝑐𝐵 

From the reaction stoichiometry, we know that: 𝑐𝐵 = 𝑐𝐵0 − (𝑐𝐴0 − 𝑐𝐴), thus we can write the rate law 

having only 𝑐𝐴 as an independent variable: 

−𝑟𝐴 = 𝑘𝑐𝐴[𝑐𝐵0 − (𝑐𝐴0 − 𝑐𝐴)] 

For the liquid phase, isothermal conditions and constant volumetric flowrate we can write 𝐹𝑖 = 𝑐𝑖 ⋅ 𝑣0 

and 𝑁𝑖 = 𝑐𝑖 ⋅ 𝑉. Combining yields: 

𝑣0(𝑐𝐴0 − 𝑐𝐴) − 𝑘𝑐𝐴[𝑐𝐵0 − (𝑐𝐴0 − 𝑐𝐴)]𝑉 = 𝑉
𝑑𝑐𝐴

𝑑𝑡
 

Letting 𝜏 = 𝑉 𝑣0⁄  and rearranging gives: 

𝑑𝑐𝐴

𝑑𝑡
=

𝑐𝐴0 − 𝑐𝐴

𝜏
− 𝑘𝑐𝐴(𝑐𝐵0 − 𝑐𝐴0 + 𝑐𝐴) 

We can clean up the equation even further: 

𝑑𝑐𝐴

𝑑𝑡
= −𝑘𝑐𝐴

2 + (𝑘𝑐𝐴0 − 𝑘𝑐𝐵0 −
1

𝜏
) 𝑐𝐴 +

𝑐𝐴0

 𝜏
 

We ended up with quite a long ODE where 𝑐𝐴 is the dependent variable and 𝑡 is the independent variable. 

Analytical solution to this ODE exists, but we will first solve it with the use of MATLAB numerical method. 

  



3. Writing MATLAB code 

We will treat this point in steps for convenience. 

STEP 1. Open MATLAB console and click “New” and then “Script” under “Editor” bookmark: 

 

The following window will open: 

 

STEP 2: Create a new function by typing the following command: 

 

Here f is the variable to which the function returns its value(s). myFunction is an arbitrary name of the 

function which we specify. The terms in brackets are all the dependent and independent variables which 



our function deals with. In our case the variables are: time (t) and concentration of species A (cA). The 

variables must be listed in the order: (independent, dependent1, dependent2, … ).  

STEP 3. Save the script as “myFunction.m” by selecting “Save” and then “Save As…”. Note that the name 

of the file is automatically typed in by the software since all MATLAB functions names must be in 

accordance with the filename of the function. 

 

STEP 3. List the constant parameters and all explicit equations which exist in our model. The code must 

be placed between function and end keywords. Semicolons suppress displaying the values of the variables 

on the screen.  

 

STEP 4. Write the ODE, first setting a separate variable for the sign of the derivative 
𝑑𝑐𝐴

𝑑𝑡
, for example 

“dcAdt”. The choice of the name is arbitrary, following the rules for naming the variables in MATLAB. 

Write the right hand side of the ODE. Next, for the sake of brevity, assign the “derivative variable” to the 

variable which we created when building our function, f. The function returns the values of the derivative 

at given t and cA and saves it in the variable f. This method proves handy when we have to work with 

many ODEs (a system of ODEs). An example is provided in Ordinary Differential Equation (ODE) solver 

for Example 12-1 in MATLAB tutorials section on the CRE website.  

http://umich.edu/~elements/5e/tutorials/MATLAB_tutorial_12.1.pdf
http://umich.edu/~elements/5e/tutorials/MATLAB_tutorial_12.1.pdf


 

  

Save the file by pressing Ctrl+S on Windows or Command+S on Mac. 

STEP 5. Create a new script (STEP 1) and save it (STEP3) as “exampleODE”. Type clear all and close all 

commands to prepare a new workspace each time we run the code. Next, type the time span for numerical 

integration (let’s assume times from 0 to 400 s) and enter the initial condition(s) (initial concentration of 

A in the reactor at time t=0 is equal to 10 mol/m3). If there are more than one dependent variable, the 

initial conditions have to be listed in an array (use square brackets), e.g. initial = [IC1, IC2, … ];. An example 

of this is shown in the second MATLAB tutorial on ODEs. 

 

STEP 6. Initialize the solver and specify the solution method by typing: 

 

timeOut is a variable where the time steps will be stored and cA is the variable where the concentration 

of species A will be saved.  timeOut and cA will correspond with each other row-by-row, i.e. the first row 

of timeOut (set to zero by us) will correspond with the initial concentration of A, cA0.  

You can choose between many different solution algorithms (see the second MATAB tutorial for the table 

of possible options). The most versatile is ode45. After typing the name of the solver, we open parenthesis 

and specify the name of the function with our ODE with the “@” at the beginning to create a function 

handle. Next, we specify our timespan and initial conditions, separating them with commas. The order of 

listing them is important. 



STEP 7. Prepare data plotting 

The solution (a pair of vectors timeOut and cA) can be plotted with the use of the following commands 

(type them after the solver line): 

 

 

STEP 7. Run the script by clicking “Run” button under “Editor” bookmark. 

 

The following plot appears: 

 



We analyze the solution: at time 0 the concentration of Species A is equal to 10 mol/m3 and gradually 

decays until the steady state is achieved (around 250 seconds after the onset of the reaction). You can 

play with parameters (especially k, V and v0) to see which of them has the largest impact on the shape of 

the curve. What is the conversion of A (complete/incomplete) at the steady state for different set of 

parameters? 

 

4. Analytical solution and comparison with numerical approximation 

We have to be conscious that the solution achieved in part 3 is only an approximation of the real  

(analytical) solution. Sometimes analytical solution does not exist whatsoever owing to the complexity of 

the problem. In such cases, numerical solution is the only one we can afford.  

In our case, however, the equation 

𝑑𝑐𝐴

𝑑𝑡
= −𝑘𝑐𝐴

2 + (𝑘𝑐𝐴0 − 𝑘𝑐𝐵0 −
1

𝜏
) 𝑐𝐴 +

𝑐𝐴0

 𝜏
 

Is not that complicated and the analytical solution is readily available. By letting 
 

𝐴 = 𝑐𝐴0/𝜏, 𝐵 = − 1 𝜏⁄ − 𝑘𝑐𝐵0 + 𝑘𝑐𝐴0 , 𝐶 = 𝑘 and 𝐷 = −4 ⋅ 𝐴 ⋅ 𝐶 − 𝐵2 
 

the solution for the same initial conditions as before reads as: 

𝑡(𝐶𝐴) = 𝐸 −  

2 tan−1 (
2𝐶 ⋅ 𝑐𝐴 − 𝐵

√𝐷
)   

√𝐷
 

where E is the integration constant: 

𝐸 =  

2 tan−1 (
2𝐶 ⋅ 𝑐𝐴0 − 𝐵

√𝐷
)   

√𝐷
 

 

As we can see, even for a relatively simple kinetics, the analytical solution may look arduous. This example 

is not meant to frighten students, but to give an insight on the difference between numerical and 

analytical methods. We save the convoluted math problems for the related course during studies. 

Concentrations of species B and C can be computed from the stoichiometry having species A as the key 

component: 

𝑐𝐵 = 𝑐𝐵0 − (𝑐𝐴0 − 𝑐𝐴) 

𝑐𝐶 = 𝑐𝐴0 − 𝑐𝐴 

When we plot all the concentrations against time and compare with the numerical solution, we obtain 

the figure presented below. As we can see, for this simple problem the approximate numerical solution 

introduces very little error. One has to have always in mind that all numerical methods treat the problem 



with certain doze of inaccuracy and the magnitude of error depends on the complexity of the problem, 

the shape of the curve (“stiffness of the ODE”) and the computational resources.  

 

 


