RADIAL EFFECTS IN TUBULAR REACTORS

We are going to study an elementary, exothermic, second order reversible reaction: $A+B \Leftrightarrow 2 C$ in a tubular reactor (liquid phase, laminar flow regime) using FEMLAB. The reactor is cooled by a cooling jacket with variable coolant temperature. We will discuss the details of the reactor model after the basics of FEMLAB are covered.

Starting the FEMLAB30F-ECRE CD-ROM

The distributed CD-ROM contains the ECRE (Elements of Chemical Reaction Engineering) version of FEMLAB and it has been tested on Windows 2000/XP computers. You can use it on your own machine or on CAEN Lab computers to run FEMLAB. You can run directly from the CD-ROM or install the program to your hard drive and run it from there.

1. Insert the CD-ROM and wait until the launcher starts (may take up to 3 minutes)

- If the launcher does not start automatically
i. Go to your CD-ROM drive directory
ii. Double-click on FEMLAB-launcher.exe

2. You should see the launcher interface as shown below

3. Click on the button with the appropriate method (Try to run the program from the CD-ROM if you cannot install it on the computer you are working with for some reason)

- If you choose the installation option, shortcuts will be placed on your Desktop and Start \rightarrow Programs menu so you can start FEMLAB. There will be also an uninstallation program in the Start \rightarrow Programs location.
- If you don't have administrative rights on the computer you are working, the default installation directory would not work. However, you can change it to your Desktop and install there.

4. Now, start FEMLAB either from the CD-ROM or from the installed shortcuts to see the Model Navigator as shown below (start-up may take up to 3-5 minutes from CD-ROM)

5. You can browse through the available example problems that correspond to the chapters of the Elements of Chemical Reaction Engineering book.
6. The Documentation button provides you background information on the system and how the model file can be created on a full version of FEMLAB.
7. Select the fourth example from chapter 8 as shown below and Click OK

8. Now, you should see the FEMLAB result as the surface plot of concentration A in the reactor with the base-case parameters

In the rest of the document we will first discuss the theoretical basis of the mathematical model constructed in FEMLAB. Then, we will go through some step-by-step virtual experiments to answer the questions at the end of this problem set.

Description of the model

The system is described by three partial differential equations on a two dimensional surface. This surface represents a cross-section of the tubular reactor in the z-r-plane. The borders of the two- dimensional surface represent the inlet, outlet, the wall of the reactor and the center line. This means that the three differential equations only will be solved for half the reactor. This can be done because the reactor is axisymmetrical.
The partial differential equations represent one mass balance for the fluid inside the reactor, and two energy balances, one for the fluid inside the reactor and one for the coolant in the cooling jacket.

The PDEs and ODE are:

Mass Balance, species A

$\mathrm{D}_{\mathrm{p}} \frac{1}{\mathrm{r}} \frac{\partial \mathrm{C}_{\mathrm{A}}}{\partial \mathrm{r}}+\mathrm{D}_{\mathrm{p}} \frac{\partial^{2} \mathrm{C}_{\mathrm{A}}}{\partial \mathrm{r}^{2}}+\mathrm{D}_{\mathrm{p}} \frac{\partial^{2} \mathrm{C}_{\mathrm{A}}}{\partial \mathrm{z}^{2}}-2 \mathrm{U}\left(1-\left(\frac{\mathrm{r}}{\mathrm{R}}\right)^{2}\right) \frac{\partial \mathrm{C}_{\mathrm{A}}}{\partial \mathrm{z}}+\mathrm{r}_{\mathrm{A}}=0$
The boundary conditions for the mass balance are Inlet ($\mathrm{z}=0$)

$$
C_{A}(r, 0)=C_{A 0}
$$

At the wall ($r=\mathrm{R}=$ radius) $\quad \frac{\partial \mathrm{C}_{\mathrm{A}}}{\partial \mathrm{r}}(\mathrm{R}, \mathrm{z})=0$
Center (symmetry) line $\quad \frac{\partial \mathrm{C}_{\mathrm{A}}}{\partial \mathrm{r}}(0, z)=0$
In reality, there is no need to specify a boundary condition for the outlet boundary. FEMLAB, however, requires that a boundary condition is selected for all boundaries. The boundary condition selected for the outlet is not a true boundary condition, meaning that it doesn't put any restrictions to the calculations but keeps the outlet boundary open.

Outlet (z=L=length) $\frac{\partial \mathrm{C}_{\mathrm{A}}}{\partial \mathrm{z}}(\mathrm{r}, \mathrm{L})=0$ (fully-developed flow)

Energy balance inside the reactor

$$
k \frac{1}{r} \frac{\partial T}{\partial r}+k \frac{\partial^{2} T}{\partial r^{2}}+k \frac{\partial^{2} T}{\partial z^{2}}-2 U\left(1-\left(\frac{r}{R}\right)^{2}\right) \rho C_{p} \frac{\partial T}{\partial z}-r_{A}\left(-\Delta H_{R x}\right)=0
$$

The boundary conditions for the energy balance are
Inlet ($\mathrm{z}=0$)

$$
T(r, 0)=T_{0}
$$

At the wall ($r=R=$ radius $) \quad-\frac{\partial T}{\partial r}(R, z)=\frac{U_{k}}{k}\left(T-T_{a}\right)$
Center (symmetry) line $\quad \frac{\partial \mathrm{T}}{\partial \mathrm{r}}(0, \mathrm{z})=0$
As for the mass balance, the boundary condition at the outlet for the energy balance is chosen in such way to keep the outlet boundary open.

Outlet (z=L=length) $\quad \frac{\partial T}{\partial z}(r, L)=0$ (fully-developed flow)

Energy balance of the coolant in the cooling jacket

$$
\frac{d T_{a}}{d z}=\frac{2 \pi R U_{k}\left(T-T_{a}\right)}{m_{C} C_{P_{c}}}
$$

The boundary condition for the cooling jacket is

The cooling jacket is described by a one dimensional line. Therefore, we only need an inlet boundary condition for the cooling jacket.
Inlet $(\mathrm{z}=0) \quad T_{a}(0)=T_{a 0}$

Constant Model Parameters

Parameters for the model (Note: for each parameter, the left-hand-side part of the equal sign (e.g. Diff) is used for the Name of constant and the right-hand-side part of the equal sign (e.g. 1E-9) is used for the Expression):

- Diffusivity of all species, Diff $=1 \mathrm{E}-9 \mathrm{~m}^{2} / \mathrm{s}$
- Activation energy, $E=95238 \mathrm{~J} / \mathrm{mol}$
- Rate constant, $A=1.1 \mathrm{E} 8 \mathrm{~m}^{6} /(\mathrm{mol} \cdot \mathrm{kg} \cdot \mathrm{s})$
- Gas constant, $R=8.314 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}$
- Inlet temperature, $T_{0}=320 \mathrm{~K}$
- Total flowrate, $v_{0}=0.0005 \mathrm{~m}^{3} / \mathrm{s}$
- Reactant concentrations in the feed, $C_{A 0}=C_{B 0}=500 \mathrm{~mol} / \mathrm{m}^{3}$
- Reactor radius, $R a=0.1 \mathrm{~m}$
- Catalyst density, $\rho_{\text {Cat }}$, rhoCat $=1500 \mathrm{~kg} / \mathrm{m}^{3}$
- Heat of reaction, $\Delta H_{R x}, \mathrm{dHrx}=-83680 \mathrm{~J} / \mathrm{mol}$
- Equilibrium constant at $303 \mathrm{~K}, \mathrm{Keq}_{0}=1000$ @ 303 K
- Thermal conductivity of the reaction mixture, $k e=0.559 \mathrm{~J} / \mathrm{m} \cdot \mathrm{s} \cdot \mathrm{K}$
- Average density of the reaction mixture, ρ, rho $=1000 \mathrm{~kg} / \mathrm{m}^{3}$
- Heat capacity of the reaction mixture, $C p=4180 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}$
- Overall heat transfer coefficient, $U_{k}=1300 \mathrm{~J} / \mathrm{m}^{2} \cdot \mathrm{~s} \cdot \mathrm{~K}$
- Inlet temperature of the coolant, $T a_{0}=298 \mathrm{~K}$
- Heat capacity of the coolant, $C p_{J}=4180 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}$
- Coolant flowrate, $m_{J}=0.01 \mathrm{~kg} / \mathrm{s}$

Variable Model Parameters

The definitions for the variables used in this model are (Note: for each expression in FEMLAB form, the left-hand-side part of the equal sign (e.g. u0) is used for the Name of the variable and the right-hand-side part of the equal sign (e.g. v0/(pi*Ra^2)) is used for the Expression):

- The superficial flow rate, $u_{0}=\frac{v_{0}}{\pi \cdot(R a)^{2}}$.

In FEMLAB form: $u 0=v 0 /\left(p i^{*} R a^{\wedge} 2\right)$

- The superficial, laminar, flow rate, $u_{z}=2 \cdot u_{0}\left(1-\left(\frac{r}{R a}\right)^{2}\right)$

In FEMLAB form: uz = 2*u0*(1-(r/Ra). $\left.{ }^{\wedge} 2\right)$

- The conversion, $x_{A}=\frac{c_{A 0}-c_{A}}{c_{A 0}}$

In FEMLAB form: $x A=(c A 0-c A) / c A 0$

- The concentration of $\mathrm{B}, c_{B}=c_{B 0}-c_{A 0} \cdot x_{A}$

In FEMLAB form: $\mathrm{cB}=c B 0-c A 0^{*} x A$

- The concentration of $\mathrm{C}, c_{C}=2 \cdot c_{A 0} \cdot x_{A}$

In FEMLAB form: $\mathrm{cC}=2^{*} c A 0^{*} x A$

- The rate of reaction:
- Before adding the energy balance:

$$
r_{A}=-A \cdot \exp \left(\frac{-E}{R \cdot T_{0}}\right) \cdot \rho_{C a t} \cdot\left(c_{A} \cdot c_{B}-\frac{c_{C}{ }^{2}}{K_{e q}}\right)
$$

In FEMLAB form: $\mathrm{rA}=-A^{*} \exp (-E / R / T 0)^{*} r h o C a t^{*}\left(c A .{ }^{*} c B-c C . \wedge 2 / K e q\right)$

- After adding the energy balance:

$$
r_{A}=-A \cdot \exp \left(\frac{-E}{R \cdot T}\right) \cdot \rho_{C a t} \cdot\left(c_{A} \cdot c_{B}-\frac{c_{C}{ }^{2}}{K_{e q}}\right)
$$

In FEMLAB form: $\mathrm{rA}=-A^{*} \exp (-E / R / T)^{*} r h o C a t^{*}\left(c A .{ }^{*} c B-c C .^{\wedge} 2 / K e q\right)$

- The temperature dependent equilibrium constant,
- Before adding the energy balance:

$$
K_{e q}=K_{e q 0} \cdot \exp \left(\frac{\Delta H_{R x}}{R}\left(\frac{1}{303}-\frac{1}{T_{0}}\right)\right)
$$

In FEMLAB form: $\mathrm{Keq}=K e q 0^{*} \exp \left(d H r x / R^{*}(1 / 303-1 / T 0)\right)$

- After adding the energy balance:

$$
K_{e q}=K_{e q 0} \cdot \exp \left(\frac{\Delta H_{R x}}{R}\left(\frac{1}{303}-\frac{1}{T}\right)\right)
$$

In FEMLAB form: $\mathrm{Keq}=K e q 0^{*} \exp \left(d H r x / R^{*}(1 / 303-1 / T)\right)$

- The heat production term, $Q=\left(-r_{A}\right) \cdot\left(-\Delta H_{R x}\right)$

In FEMLAB form: $Q=(-r A)^{*}(-d H r x)$

How to change the constant model parameters

Let's increase the activation energy, E, by 2\%

1. Select the menu Options \rightarrow Constants

2. Select E in the list and add *1.02 to the end of the Expression

Constants			X
Name	Expression	Value	
Diff	1e-9	$1 \mathrm{e}-9$	$\stackrel{\text { 승 }}{ }$
E	95238*1.02	95238	
A	1.1 e 8	1.1 e 8	
R	8.314	8.314	
T0	320	320	
vo	0.0005	5e-4	
ca0	500	500	
cB0	500	500	
Ra	0.1	0.1	
rhoCat	1500	1500	
dHrx	-83680	-83680	
Keq0	1000	1000	
ke	0.559	0.559	
rho	1000	1000	
Cp	4180	4180	
		Cancel	Apply

3. To solve the model with the new parameter click the equal sign from the toolbar as shown below

How to construct cross-section plots

Let's draw a conversion profile at the mid point of the reactor

1. First, make sure FEMLAB is in Postprocessing Mode by selecting the button circled below

2. Select Postprocessing \rightarrow Cross-Section Plot Parameters

-s Solve	Postprocessing Help	
\% 8 \%	Q Plot Parameters...	S/
	Cross-Section Plot Parameters...	
	Domain Plot Parameters...	
	Subdomain Integration...	
Ron ındarw Tntenration		

3. Select the Line/Extrusion tab and fill in the values as shown below to create a cross-section plot at the reactor

4. Press Apply to see the graph below

5. The main window will show a red line where the cross-section is taken

6. We can add more cross-section plots to the same graph shown in step 5 repeating step 3 and selecting Figure 1 from the General tab before defining a new cross section on the Line/Extrusion tab

How to find average conditions through integration

Let's calculate the average outlet conversion

1. After solving the model we have the concentration of A as a function of r and z, namely, cA(r,z)
2. At the outlet of the reactor $(z=1)$ the average flow rate of species A is defined mathematically as
$\overline{F A}=\frac{\int_{r_{\text {min }}}=0}{r_{\text {max }}=0.1}(2 \pi r)(u z \cdot c A(r, 1)) d r$
3. Similarly, at the entrance, the average flow rate of species A is
$\overline{F A 0}=\frac{\int_{r_{\min }=0}^{r_{\max }=0.1}(2 \pi r)(u z \cdot c A(r, 0)) d r}{\pi R^{2} / 2}$
4. With these definitions, the average conversion at the outlet is defined as
$\bar{X}=\frac{\overline{F A 0}-\overline{F A}}{\overline{F A 0}} \cdot 100$
5. FEMLAB provides Subdomain and Boundary Integration for integrating arbitrary expressions that involve the solved variables
6. Select Postprocessing \rightarrow Boundary Integration

7. First select $\mathbf{2}$ in the Boundary Selection for the inlet

8. Then enter ($\left.\mathbf{c} \mathbf{A}^{*} \mathbf{u z}\right)^{*} \mathbf{2}^{*} \mathbf{p} \mathbf{i}^{*} \mathbf{r}$ for the expression to be integrated
9. Click Apply
10. Value of the integral is reported at the bottom of the main FEMLAB window as Value of line integral: 0.25, Expression: (cA*uz)*2*pi*r, Boundary: 2.
11. Repeat the same procedure for the third boundary Value of line integral: 0.093119, Expression: (cA*uz)*2*pi*r, Boundary: 3.
12. Now, perform the final operation manually
$\bar{X}=\frac{0.25-0.093}{0.25} \cdot 100=62.8 \% \approx 63 \%$
13. Note that we have omitted the term in the denominator shown in steps 3 and 4 because in step 12 they would have been cancelled out anyway.

How to define new expressions

1. The conversion, $x A$, is not defined implicitly by the PDE's describing the physical system. Therefore it is defined explicitly in FEMLAB.
2. Select Options \rightarrow Expressions \rightarrow Scalar Expressions

3. In addition to other variables, the conversion, $x A$, is defined as shown below

4. The expressions for uz, rA, Keq, etc. are used by FEMLAB to calculate the solution
5. The expressions for $x A, c B$ and $c C$, however, are created for use in the postprocessing mode
6. You can use xA or any other scalar expression in the postprocessing mode (in graphs, etc.) instead of the predefined variables
7. To make a crossplot of the conversion $x A$, type the name of the scalar expression in the appropriate place as shown below
```
ly-axis data 
```

8. The average conversion at the outlet could have been also evaluated by realizing that for averaging xA we can perform the following integration

$$
=\frac{\int_{r_{\min }=0}^{r_{\max }=0.1} x A(r, 1) d r}{r_{\max }-r_{\min }}
$$

9. On Boundary Integration dialog entering the expression to be integrated as below results the same $62.9 \% \approx 63 \%$ we found earlier

10. The value is reported on the main FEMLAB window as
```
Value of line integral: 0.628575, Expression: xA/(0.1-0.0), Boundary: 3.
```


Questions

1. Analyze visually the FEMLAB solution for the base-case of the model and answer following questions:
a. Why is the concentration of A near the wall lower than the concentration near the center?
b. Where in the reactor do you find the maximum and minimum reaction rates? Why?
2. Now, we will change some of the parameters and rerun the model.
a. Increase the activation energy of the reaction by 5%. How do the conversion profiles change? How does the average outlet conversion change?
b. Decrease the original activation energy by 5%. How do the conversion profiles change? How does the average outlet conversion change?
c. Change the activation energy back to the original value.
d. Increase the thermal conductivity, ke, by a factor of 10 and explain how this change affects the temperature profiles. At what radial position do you find the highest conversion?
e. Increase the coolant flow rate by a factor of 10 and explain how this change affects the conversion?
3. Describe your findings in 2-3 sentences when you varied the parameters (for all parts).
4. What would be your recommendation to maximize the average outlet conversion?
