A physiologically based model for ethanol and acetaldehyde metabolism in human beings

David M. Umulis¹, Nihat M. Gürmén, Prashant Singh, H. Scott Fogler*

University of Michigan, Department of Chemical Engineering, 2300 Hayward Street, Ann Arbor, MI 48109-2136, USA

Received 19 August 2004; received in revised form 2 November 2004; accepted 7 November 2004

Abstract

Pharmacokinetic models for ethanol metabolism have contributed to the understanding of ethanol clearance in human beings. However, these models fail to account for ethanol’s toxic metabolite, acetaldehyde. Acetaldehyde accumulation leads to signs and symptoms, such as cardiac arrhythmias, nausea, anxiety, and facial flushing. Nevertheless, it is difficult to determine the levels of acetaldehyde in the blood or other tissues because of artifactual formation and other technical issues. Therefore, we have constructed a promising physiologically based pharmacokinetic (PBPK) model, which is an excellent match for existing ethanol and acetaldehyde concentration–time data. The model consists of five compartments that exchange material: stomach, gastrointestinal tract, liver, central fluid, and muscle. All compartments except the liver are modeled as stirred reactors. The liver is modeled as a tubular flow reactor. We derived average enzymatic rate laws for alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenase (ALDH), determined kinetic parameters from the literature, and found best-fit parameters by minimizing the squared error between our profiles and the experimental data. The model’s transient output correlates strongly with the experimentally observed results for healthy individuals and for those with reduced ALDH activity caused by a genetic deficiency of the primary acetaldehyde-metabolizing enzyme ALDH2. Furthermore, the model shows that the reverse reaction of acetaldehyde back into ethanol is essential and keeps acetaldehyde levels approximately 10-fold lower than if the reaction were irreversible. © 2005 Elsevier Inc. All rights reserved.

Keywords: Alcohol metabolism; Acetaldehyde dehydrogenase (ALDH); ALDH deficiency; Physiologically based pharmacokinetic (PBPK) model; Alcohol dehydrogenase (ADH); Michaelis–Menten kinetics

1. Introduction

Pharmacokinetic models for in vivo ethanol elimination have evolved significantly during the past 70 years, from the inception of a pseudo zero-order elimination process (Widmark, 1932) to the current physiologically based models such as those developed by Derr (1993), Levitt (2002), and Norberg (2001). Although the models continually improve in their ability to predict time trajectories for ethanol concentration, they fail to account for the production and interaction of ethanol’s major metabolite, acetaldehyde. Acetaldehyde is highly toxic, with a 50% lethal dose (LD₅₀) concentration approximately 10 times lower than that for ethanol in rats (Brien & Loomis, 1983). Acetaldehyde exposure leads to a number of well-known signs and symptoms, such as cardiac arrhythmias, nausea, anxiety, and facial flushing (Condouris & Havelin, 1987; Peng et al., 1999; Yamamoto et al., 2000).

In this article, we present a physiologically based model with reversible enzyme kinetics that accurately predicts simultaneously the concentrations of both ethanol and acetaldehyde in the blood as a function of time.

2. Methods

2.1. Rate law derivation

The rate law for ethanol metabolism is based on the alcohol dehydrogenase (ADH) reaction pathway because it is the largest contributor to ethanol oxidation.

The first assumption is that the concentration of the oxidized form of nicotinamide adenine dinucleotide (NAD⁺) reaches its rate-limiting state shortly after ingestion and remains constant. Ethanol elimination is approximately zeroth order, supporting the suggestion that the reaction is limited by the amount of enzyme, co-substrate, or both. The enzymatic reaction, accounting for the NAD⁺ co-substrate, is
is the ethanol concentration, and activity alone accounts for
Fig. 1
Levitt and C, can be approximated by a first-order linear
In healthy human beings, ALDH2 (S
is similar to the derivation for ethanol oxidation with one
the stomach and intestine).
rate law. The rate law for acetaldehyde oxidation depends
D.M. Umulis et al. / Alcohol 35 (2005) 3–12
photosynthesis (PSSH) to the enzyme–ethanol and enzyme–acetaldehyde complexes (Fogler, 1999).
Acetaldehyde oxidation is similar to the derivation for ethanol oxidation with one major exception: Acetaldehyde oxidation to acetate is not reversible. The rate law is based on the mitochondrial class 2 aldehyde dehydrogenase (ALDH2) enzymatic pathway because it is the largest contributor to acetaldehyde oxidation. In healthy human beings, ALDH2 activity alone accounts for more than 99% of acetaldehyde oxidation (Riveros-Rosas et al., 1997). ALDH2 uses the same co-substrate, NAD\(^+\), as ADH, and therefore it is assumed to reach its rate-limiting state rapidly and to remain constant at that level. The derivation of the acetaldehyde oxidation rate law is also based on application of the PSSH to the enzyme–substrate complexes.
Balance equations and rate law derivation are shown in Fig. 1A (Fogler, 1999). \(C_{AI}\) is the ethanol concentration, and \(C_{Ac}\) is the acetaldehyde concentration. \(V_{maxADH}\) is the maximum enzymatic oxidation rate of ethanol, \(V_{revADH}\) is the maximum rate of the reverse reaction of acetaldehyde to ethanol, and \(K_{mADH}\) and \(K_{revADH}\) are reaction constants for the rate law. The rate law for acetaldehyde oxidation depends only on the concentration of acetaldehyde and follows classical Michaelis–Menten kinetics.

2.2. Physiologically based model

We consider our system to be lumped into five organ compartments that exchange material. The five compartments are the stomach, gastrointestinal tract, liver, central fluid, and muscle. The stomach compartment in this model contains zero tissue water volume and only the volume of the liquid contents (alcoholic beverage), which is absorbed into the gastrointestinal compartment. The gastrointestinal compartment accounts for the tissue water volume of the intestines and the stomach where ethanol is first absorbed. We chose to separate the gastrointestinal compartment from the central compartment on the basis of physiologic connectivity. This separation also establishes a base case model that can be extended easily to studies on the role of the gastrointestinal tract in first-pass metabolism. A perfusion-limited model was selected because both ethanol and acetaldehyde are small molecules with rapid diffusion, and their distribution is limited by the rate they are transported to the tissues, not by the rate at which they are absorbed.
Physiologically based models have available to them the human approximations for tissue water volume, perfusion rates, and tissue water distribution (well-mixed vs. concentration gradient). Such data are given in Table 1 for a “standard” 69.4-kg man whose total body water content is 40.8 l (Rowland et al., 1995).
To accurately describe ethanol and acetaldehyde metabolism in vivo, we divided the total tissue water volume of an average 69.4-kg male human being into three well-mixed compartments and one tubular flow compartment. Organ volumes were lumped into compartments on the basis of three criteria: (1) perfusion rate of fluid through each organ, (2) physical connectivity between organs, and (3) ethanol and acetaldehyde metabolic activity. The perfusion rate is defined as the flow rate to and from the organ per unit volume of tissue, and the inverse of the perfusion rate is the residence time. Ethanol and acetaldehyde metabolism occurs within the liver, which was considered as a tubular flow reactor on the basis of early kinetic results obtained by Keiding and Priisholm (1984). The stomach and intestine water volumes were grouped into the gastrointestinal compartment because they are connected directly to the liver by means of the hepatic portal vein and because they are the sites of ethanol absorption from an external source. Finally, organs with a perfusion rate of greater than 0.08 ml/min/ml H\(_2\)O were placed within the central compartment, whereas organs with perfusion rates of less than 0.08 ml/min/ml H\(_2\)O were placed within the muscle compartment.
Mass balance equations with the appropriate reaction rate laws were constructed on the basis of flow of blood between compartments and are shown in Fig. 1B. The compartment labeled “Stomach” contains the ethanol that is external to the body and represents the volume of the liquid contents (alcoholic beverage) that is absorbed into the gastrointestinal compartment. Fig. 2A shows the compartment/flow diagram for the model. The rate of stomach emptying, determined by using radiopharmaceuticals by Levitt and Levitt (1994), can be approximated by a first-order linear ordinary differential equation, where the rate of removal
\[
\begin{align*}
\text{r}_{AI} = & \frac{V_{mADH}(S_1)(S_2)}{K_{12} + K_1(S_1) + K_2(S_2) + (S_1)(S_2)} \\
\text{where } S_1 = & C_{\text{Alcohol}} \text{ and } S_2 = C_{\text{NAD}^+}.
\end{align*}
\]

is proportional to the volume of stomach contents (Levitt & Levitt, 1994). However, the stomach-emptying rate constant depends on the osmotic pressure of the stomach contents, and ethanol increases the osmotic pressure. Wilkinson et al. (1977) have shown that the rate constant is a nonlinear function of the initial dose of ethanol ingested. The equation previously proposed and used for this work is $k_S = k_{S_{\text{max}}} \cdot (1 + a(D^2))$, where k_S is the stomach-emptying rate constant, $k_{S_{\text{max}}}$ is the maximum stomach-emptying rate constant, a is an empirical parameter, and D is the initial dose (mmol) of ethanol in the stomach.

It is quite difficult to determine the concentration of free acetaldehyde in the blood on the basis of either breath or blood analysis methods. Artifactual formation of acetaldehyde...
Table 1
Tissue water volumes, blood flow rates, and perfusion rates for the “standard” 69.4-kg man

<table>
<thead>
<tr>
<th>Compartment</th>
<th>Tissue</th>
<th>H₂O volume (l)</th>
<th>Blood flow (ml/min)</th>
<th>Perfusion rate (ml/min/ml H₂O)</th>
<th>Residence time (min)</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central</td>
<td>Lungs</td>
<td>0.37</td>
<td>5,000</td>
<td>13.33</td>
<td>0.07</td>
<td>a</td>
</tr>
<tr>
<td>V_C = 11.56 l</td>
<td>Kidneys</td>
<td>0.21</td>
<td>1,100</td>
<td>5.14</td>
<td>0.19</td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>Blood</td>
<td>2.84</td>
<td>5,000</td>
<td>1.76</td>
<td>0.57</td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>Brain</td>
<td>1.03</td>
<td>700</td>
<td>0.68</td>
<td>1.47</td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>Heart, spleen</td>
<td>1.18</td>
<td>350</td>
<td>0.29</td>
<td>3.37</td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>Bone</td>
<td>2.44</td>
<td>250</td>
<td>0.10</td>
<td>10.00</td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>Skin</td>
<td>3.49</td>
<td>300</td>
<td>0.085</td>
<td>11.63</td>
<td>a</td>
</tr>
<tr>
<td>Muscle</td>
<td>Fat</td>
<td>3.76</td>
<td>200</td>
<td>0.053</td>
<td>18.80</td>
<td>a</td>
</tr>
<tr>
<td>V_M = 25.76 l</td>
<td>Muscle</td>
<td>22.0</td>
<td>750</td>
<td>0.034</td>
<td>29.33</td>
<td>a</td>
</tr>
<tr>
<td>Gastrointestinal tract</td>
<td>Stomach/intestine</td>
<td>2.40</td>
<td>900</td>
<td>0.375</td>
<td>2.67</td>
<td>a,b</td>
</tr>
<tr>
<td>Liver</td>
<td>Liver</td>
<td>1.08</td>
<td>1,350</td>
<td>1.25</td>
<td>0.80</td>
<td>a,c</td>
</tr>
</tbody>
</table>

Total body water content is 40.8 l.

inhibits accurate blood analysis, and production of acetaldehyde by microorganisms in the throat inhibits acetaldehyde determination from breath assays (Jones, 1995). Much of the acetaldehyde present in the blood is bound to plasma proteins and hemoglobin. Only the unbound acetaldehyde crosses the alveolar–capillary membranes of the lungs, and great care must be taken to ensure one is actually measuring free acetaldehyde. Breath tests give an approximation of free acetaldehyde in the blood; however, random errors in the assay used detract from the ability to accurately calculate blood acetaldehyde concentrations from breath levels. Noting these problems, we used breath acetaldehyde data in our initial analysis. To verify and test the model further, we compared our theoretical results with data obtained more recently by blood analysis in Asian men, for which recent results are available: 0.15, 0.3, 0.45, and 0.6 g/kg. One notes that in all cases there is little variation between these two realizations. The model parameters are shown in Table 2. Because of the lack of a firmly established value, the Michaelis–Menten parameter \(V_{\text{max}} \) was taken to be 2.7 mmol/(min \(\cdot \) kg liver), which is within the range of the suggested values (Deetz et al., 1984).

In addition to the parameters in Table 2, \(k_{\text{Smax}} \) and \(a \) were fit to the model. Values of 0.05 min\(^{-1}\) and 1.22 mol\(^{-1}\) were obtained for \(k_{\text{Smax}} \) and \(a \), respectively. Using these values for \(k_{\text{Smax}} \) and \(a \), we obtained the overall stomach-emptying rate constants, in comparison with those from Wilkinson et al. (1977), shown in Table 3.

The absorption rate is much less dependent on the concentration of ethanol in the current model. In fact, for the 0.6-g/kg dose of ethanol, the results of our current studies indicate that 92% of the ethanol is absorbed within 100 min, whereas in the one-compartment model only 39% of the ethanol is absorbed. Even with very slow absorption rates, greater than 80% absorption is expected to occur within 100 min (Levitt & Levitt, 1994; Levitt et al., 1997).

3.2. Ethanol concentration

Fig. 2B shows a comparison of the ethanol concentration–time trajectories for the central compartment with the data obtained by Wilkinson et al. (1977). The four curves correspond to four different doses of ethanol being administered: 0.15, 0.3, 0.45, and 0.6 g/kg. One notes that in all
cases there is excellent agreement between theory and experiment, as well as that the parameters taken from the literature give virtually the same result as those found by the least squares fit.

The correlation between the model predictions and experimental observations is excellent for ethanol, with an r^2 value of .98. One readily observes the model accurately predicts the ethanol concentration–time trajectory by using physiologically relevant parameters.

3.3. Alcohol dehydrogenase reverse reaction

The reverse reaction for acetaldehyde to ethanol in the blood is favored 5 to 50 times over acetaldehyde on the basis of in vitro calculations, supporting the notion of a significant reverse reaction effect (Deetz et al., 1984). To determine the influence of acetaldehyde on the removal of ethanol, we considered the data of Jones et al. (1988), who administered calcium carbimide in volunteers to slow the rate of acetaldehyde metabolism before giving them a dose of ethanol equivalent to 0.25 g of ethanol (96%) per kilogram of body weight. To calculate the value for the reverse reaction enzymatic activity parameter, V_{rev}, it was assumed that the concentration of acetaldehyde in the liver is equal to the concentration of acetaldehyde in the central compartment at time t. This approximation was made because of the lack of available data, and it introduces a minor amount of systematic error to our least squares fit estimate for V_{rev}. Fig. 2C shows a comparison of the suppressed metabolism and normal metabolism, along with the model prediction for each case. Theory and experiment are in good agreement, and
Table 2
Rate law parameters with the best model fit from least squares analysis in comparison with experimentally observed ranges and values used for the comparison plots

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Model</th>
<th>Experimental</th>
<th>Graph</th>
<th>Units</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{maxAc}</td>
<td>2.2</td>
<td>2.0, 2.4–4.7</td>
<td>2.2</td>
<td>mmol/(min/kg liver)$^{-1}$</td>
<td>a,b</td>
</tr>
<tr>
<td>K_{mAc}</td>
<td>0.4</td>
<td>–1</td>
<td>1</td>
<td>mM</td>
<td>c</td>
</tr>
<tr>
<td>V_{rev}</td>
<td>32.6</td>
<td>11–110¹</td>
<td>60.5</td>
<td>mmol/(min/kg liver)$^{-1}$</td>
<td>d,e</td>
</tr>
<tr>
<td>K_{rev}</td>
<td>1</td>
<td>–1</td>
<td>1</td>
<td>mM/mM</td>
<td>d,e</td>
</tr>
<tr>
<td>V_{maxAl}</td>
<td>2.7</td>
<td>–3</td>
<td>2.7</td>
<td>mmol/(min/kg liver)$^{-1}$</td>
<td>Estimate</td>
</tr>
<tr>
<td>K_{maxAl}</td>
<td>1.2</td>
<td>0.2–3</td>
<td>1.6</td>
<td>µM</td>
<td>cf</td>
</tr>
</tbody>
</table>

¹Experimental values of 2.4 and 4.7 mmol/(min/kg liver)$^{-1}$ were observed at pH 8.5 and 10.5, respectively. Actual activity at physiologic liver pH of 7.5 is expected to be lower because pH 8.5 and 10.5 correspond to the optimal pH of two different forms of alcohol dehydrogenase.

The correlation between the model-predicted and experimentally observed results for the regular ethanol and calcium carbimide–inhibited ALDH2 cases yields r^2 values of .99 and .89, respectively.

3.4. Acetaldehyde concentration

As discussed earlier, one of the salient features of the current model is that it can simultaneously predict the concentration–time trajectories for ethanol and acetaldehyde when they are measured simultaneously. Fig. 2C shows the ethanol comparison, and Fig. 2D shows the acetaldehyde comparison. There was no adjustment of parameter values for the different concentration trajectories. The results for blood acetaldehyde concentration–time trajectories predicted by the model are compared with experimental results obtained by Jones et al. (1988), after administration of a dose of ethanol equivalent to 0.25 g of ethanol (96%) per kilogram of body weight. Again, the agreement between the experiment measurements and the model is excellent. A correlation between the model-predicted and observed results for acetaldehyde is good, with an r^2 value of .88.

Table 3
Stomach-emptying rate constants

<table>
<thead>
<tr>
<th>Ethanol (g/kg)</th>
<th>Study/source</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.15</td>
<td>Current work, k_s</td>
</tr>
<tr>
<td>0.3</td>
<td>Wilkinson et al. ¹, k_s</td>
</tr>
</tbody>
</table>

3.5. Acetaldehyde dehydrogenase deficiency

Another primary feature of the current model is its application to aldehyde dehydrogenase–deficient individuals to predict the acetaldehyde concentration–time trajectory. Acetaldehyde dehydrogenase activity in the liver was calculated by using data obtained from Enomoto et al. (1991), and it was based on the percent change from normal activity. Enomoto et al. (1991) showed that the total ALDH specific activity for acetaldehyde metabolism (V_{maxAc}) in heterozygous ALDH2*1/*2 individuals was only 70% of the total ALDH specific activity for acetaldehyde metabolism (V_{maxAc}) in homozygous ALDH2*1/*1 individuals for low doses of ethanol. In addition, the total ALDH specific activity for acetaldehyde metabolism (V_{maxAc}) in homozygous ALDH2*2/*2 individuals was only 55% of the total ALDH specific activity for acetaldehyde metabolism (V_{maxAc}) in homozygous ALDH2*1/*1 individuals. When we apply these percentages to our model V_{maxAc}, we get rates of 1.89 and 1.49 mmol/(min/kg liver)$^{-1}$ for ALDH2*1/*2 and ALDH2*2/*2 individuals, respectively. The results for heterozygous ALDH2*1/*2 individuals are in agreement with the results shown by Wang et al. (1996). The Michaelis–Menten constant (K_m) was held constant, and only V_{maxAc} was varied.

These parameters were used in the model and compared with the data obtained from Peng et al. (1999) (Fig. 3A–3D), obtained by ethanol administration to ALDH2*1/*1, ALDH2*1/*2, and ALDH2*2/*2 individuals (Peng et al., 1999; Wang et al., 1996). In addition, the stomach-emptying rate constant was reduced to 50% of the normal absorption rate because the subjects ate breakfast approximately 2 h before the study. In other studies (Jones et al., 1988; Wilkinson...
Fig. 3. Ethanol concentration results for model (—) versus data (▲) from Peng et al. (1999) after an equivalent 0.2-g/kg dose of ethanol in healthy (A) ALDH2*1/*1, (B) heterozygous ALDH2*1/*2, and (C) homozygous ALDH2*2/*2 individuals. D. Comparison of the model-predicted ethanol concentration results from cases ALDH2*1/*1 (——), ALDH2*1/*2 (- - - - -), and ALDH2*2/*2 (— – —) to illustrate the effect of the reverse reaction of acetaldehyde to ethanol. Data (▲), panels A–C: adapted from G. S. Peng, M. F. Wang, C. Y. Chen, S. U. Luu, H. C. Chou, T. K. Li, and S. J. Yin, Involvement of acetaldehyde for full protection against alcoholism by homozygosity of the variant allele of mitochondrial aldehyde dehydrogenase gene in Asians, Pharmacogenetics 9(4), pp. 463–476, fig. 1, copyright 1999, with permission of Lippincott Williams & Wilkins, http://lww.com.

et al., 1977), an overnight fast was required. This is calculated on the basis of the ethanol concentration–time data obtained by Lucey et al. (1999), after oral ingestion of ethanol at 0.3 g/kg in individuals after an overnight fast and consumption of a standard meal. The stomach-emptying rate constant decreases by approximately 50% after oral ingestion of ethanol at 0.3 g/kg after consumption of a standard meal. Plots of experimental data from Lucey et al. (1999), for fed and fasted states and model-predicted curves, are shown in Fig. 4D. Fig. 3 and Fig. 4A show the blood ethanol and blood acetaldehyde concentrations, respectively.

Fig. 4A shows acetaldehyde concentration–time trajectories for ALDH2*1/*1 (bottom), ALDH2*1/*2 (middle), and ALDH2*2/*2 (top) individuals with data from Peng et al. (1999). As acetaldehyde concentration increases, the peak concentration becomes more distinct than is seen in lower acetaldehyde concentrations, where plateaus develop. Thus, as acetaldehyde concentration increases, the characteristic shape of the concentration–time trajectory for acetaldehyde more closely resembles the ethanol concentration–time trajectory, and the reaction is limited by the rate of acetaldehyde removal. In healthy ALDH2*1/*1 individuals, the plateau

shape is a result of the balance between the rate of acetaldehyde formation from ethanol and removal. Fig. 4B and 4C show the concentration–time trajectories for ethanol and acetaldehyde, respectively, with and without the reverse reaction accounted for in the rate law for ethanol. By neglecting the reverse reaction, the peak level and area under the curve (a measure of exposure) of ethanol are decreased, whereas the exposure to acetaldehyde is greatly increased. Fig. 4D shows the concentration–time trajectories for ethanol after oral ingestion of ethanol at 0.3 g/kg with an overnight fast and consumption of a standard meal.

4. Conclusions

Findings of the current work demonstrate, for the first time, simultaneous ethanol and acetaldehyde concentration–time profiles. The utility of the model lies in its ability to predict the correct acetaldehyde concentration profiles in different individuals under different experimental conditions when the initial dose and mass of the individual are known. The model least squares parameters coincide strongly with
Fig. 4. A. Acetaldehyde concentration data from Peng et al. (1999) after administration of an equivalent 0.2-g/kg dose of ethanol in healthy ALDH2*1/*1 [data (▲), model (———)]; heterozygous ALDH2*1/*2 [data (■), model (-----)]; and homozygous ALDH2*2/*2 [data (◆), model (—–—)] individuals. B. Ethanol concentration data from Peng et al. (1999) after administration of an equivalent 0.2-g/kg dose of ethanol in homozygous ALDH2*2/*2 [data (◆) shown] individuals. Model curves are shown for homozygous ALDH2*2/*2 individuals with reverse reaction (——) and without reverse reaction (- - - - - -). C. Acetaldehyde concentration data from Peng et al. (1999) after administration of an equivalent 0.2-g/kg dose of ethanol in subjects homozygous ALDH2*2/*2 (◆). Model curves are shown for subjects homozygous ALDH2*2/*2 with reverse reaction (——) and without reverse reaction (- - - - - -). Note the completely different behavior and peak value of acetaldehyde for the case without the reverse reaction. D. Ethanol concentration data from Lucey et al. (1999) after an overnight fast (▲) and after consumption of a standard meal (■). Also shown are model-predicted blood ethanol curves after an overnight fast (——) and after consumption of a standard meal (- - - - - -). Doses were adjusted from the 77.2-kg subjects to the “standard” 69.4-kg man used in the model. Data from Peng et al. (1999), panels A–C: adapted from G. S. Peng, M. F. Wang, C. Y. Chen, S. U. Luu, H. C. Chou, T. K. Li, and S. J. Yin, Involvement of acetaldehyde for full protection against alcoholism by homozygosity of the variant allele of mitochondrial aldehyde dehydrogenase gene in Asians, Pharmacogenetics 9(4), pp. 463–476, fig. 1, copyright 1999, with permission of Lippincott Williams & Wilkins, http://lww.com. Data from Lucey et al. (1999), panel D: adapted with permission from Journal of Studies on Alcohol, Vol. 60, pp. 103 110, 1999. Copyright by Alcohol Research Documentation, Inc., Rutgers Center of Alcohol Studies, Piscataway, NJ 08854.

5. Appendix

5.1. Stomach compartment

Ethanol is absorbed primarily by the tissues of the first part of the small intestine (duodenum) and to a lesser extent the tissue lining the stomach (gastric mucosa). The rate of ethanol absorption by the duodenum is between 7.5 and 85 times greater than the rate ethanol enters the blood from the stomach (Wilkinson et al., 1977). Therefore, ethanol entering the duodenum is virtually instantaneously absorbed into the gastrointestinal tissues, and ethanol absorption by the duodenum can be approximated by the rate ethanol is emptied from the stomach into the duodenum.

The first-order relation for the change in volume of fluid in the stomach, \(V_S \), with respect to time is given by

\[
\frac{dV_S}{dt} = -k_S \left(V_S \right) \tag{A1}
\]

The stomach-emptying rate constant, \(k_S \) (min\(^{-1}\)), is dependent on the initial dose D (mmol) of ethanol in the system.
5.2. Gastrointestinal compartment

The stomach contents are emptied into the gastrointestinal system, which has a tissue water volume of 2.41 (Derr, 1993). The blood flow rate through the gastrointestinal system is equal to the blood flow rate entering the liver by means of the hepatic portal vein. This flow rate is approximately two thirds of the total blood flow rate to the liver, which is 1,350 ml/min (Levitt & Levitt, 1994). A mass balance on the gastrointestinal compartment gives equations (A2) and (A3) for ethanol and acetaldehyde, respectively:

\[V_G \frac{dC_{GAI}}{dt} = \left(\frac{2}{3} V_L\right)(C_{CAI} - C_{GAI}) + k_S(V_G)(C_{SAI}) \quad \text{(A2)} \]

\[V_G \frac{dC_{GAc}}{dt} = \left(\frac{2}{3} V_L\right)(C_{CAc} - C_{GAc}) \quad \text{(A3)} \]

In equations (A2) and (A3), \(V_G \) is the gastrointestinal system tissue water volume, \(v_L \) is the liver flow rate, \(C_{GAI} \) and \(C_{CAI} \) are the gastrointestinal and central compartment ethanol concentrations, respectively, and \(C_{GAc} \) and \(C_{CAc} \) are the gastrointestinal and central compartment acetaldehyde concentrations, respectively. \(V_S \) is volume of ethanol in stomach compartment, \(k_S \) is stomach-emptying rate constant, and \(C_{SAI} \) is stomach compartment ethanol concentrations.

5.3. Liver compartment

Ethanol in the blood flows through the hepatic portal vein to the liver after exiting the gastrointestinal compartment. In addition, the liver receives blood from the hepatic artery, which supplies the other two thirds of the total hepatic blood flow rate. After entering the liver, ethanol is converted into acetaldehyde by the enzyme alcohol dehydrogenase, and acetaldehyde is converted into acetate by acetaldehyde dehydrogenase. Because of the complexity of the forward and reverse reactions in this system, an unsteady-state, physiologically based perfusion liver model is used. Although an analytic solution for the case of irreversible Michaelis–Menten kinetics in a perfused liver is available (Bass et al., 1976), the log mean concentration assumption suggested in that work cannot be used for more complex rate laws with product concentration dependence such as the case presented in this article. When the tubular model (i.e., series of well-mixed compartments) and well-mixed model (i.e., one well-mixed compartment) were compared the concentration–time profiles for ethanol and acetaldehyde corresponded better to the experimental data when the tubular model was used. Furthermore, results of earlier studies supported the suggestion that the rate of clearance and \(K_m \) values exhibited a dependence on flow rate when data were fit to a well-mixed compartment, whereas the constants did not exhibit a dependence on flow rate when the perfusion-limited liver model was used (Keiding & Prichsholm, 1984). For these reasons, we decided to use the perfusion-limited liver model, and the general mass balance equation for the tubular flow compartment with reaction is

\[\frac{dC}{dt} + v_L \frac{dC}{dV_L} = R(C) \text{ with boundary condition} \]

\[C(0,t) = \frac{1}{3} C_C(t) + \frac{2}{3} C_S(t) \quad \text{(A4)} \]

\(C \) is the concentration of ethanol or acetaldehyde within the liver, whereas \(C_C \) and \(C_S \) are the concentrations within the central and stomach compartments, respectively. If a backward difference approximation to the spatial derivative is used, this partial differential equation is converted into a set of \(N \) ordinary differential equations. This is equivalent to a series of well-mixed reactors, where the output of one reactor becomes the input to the next reactor.

If liver volume is split up into \(N \) differential volumes (\(\Delta V_L \)), equation (A4) becomes equations (A5) through (A7) for ethanol and (A8) through (A10) for acetaldehyde:

Compartment L1: \[\Delta V_L \frac{dC_{GAI}}{dt} = v_L\left[\frac{1}{3} C_{CAI} + \frac{2}{3} C_{GAI} - C_{GAI}\right] + r_{AI}(C_{IAI}, C_{1AI}) \Delta V_L \quad \text{(A5)} \]

Compartment L2: \[\Delta V_L \frac{dC_{GAc}}{dt} = v_L(C_{IAI} - C_{2AI}) + r_{AI}(C_{2AI}, C_{2Ac}) \Delta V_L \quad \text{(A6)} \]

Compartment LN: \[\Delta V_L \frac{dC_{NAI}}{dt} = v_L(C_{(N-1)AI} - C_{NAI}) + r_{AI}(C_{NAI}, C_{NAc}) \Delta V_L \quad \text{(A7)} \]

Compartment L1: \[\Delta V_L \frac{dC_{1Ac}}{dt} = v_L\left[\frac{1}{3} C_{CAc} + \frac{2}{3} C_{GAc} - C_{1Ac}\right] - r_{AI}(C_{IAI}, C_{1Ac}) \Delta V_L + r_{Ac}(C_{1Ac}) \Delta V_L \quad \text{(A8)} \]

Compartment L2: \[\Delta V_L \frac{dC_{2Ac}}{dt} = v_L(C_{1Ac} - C_{2Ac}) - r_{AI}(C_{2AI}, C_{2Ac}) \Delta V_L + r_{Ac}(C_{2Ac}) \Delta V_L \quad \text{(A9)} \]

Compartment LN: \[\Delta V_L \frac{dC_{NAc}}{dt} = v_L(C_{(N-1)Ac} - C_{NAc}) - r_{AI}(C_{NAI}, C_{NAc}) \Delta V_L + r_{Ac}(C_{NAc}) \Delta V_L \quad \text{(A10)} \]

Ethanol and acetaldehyde exit the liver by means of the hepatic vein into the central compartment with concentrations \(C_{NAI} \) and \(C_{NAc} \), respectively.

5.4. Central compartment

The central compartment tissue water volume is the sum of the tissue water volumes of its components: blood, bone, brain, kidneys, lungs, skin, heart, and spleen. The central
compartment is modeled as a well-mixed venous pool with no chemical reaction. The mass balance equations for ethanol and acetaldehyde, respectively, for the central compartment are given by equations (A11) and (A12):

\[
V_C \frac{d(C_{CA})}{dt} = -v_L(C_{CA} - C_{LA}) - v_M(C_{CA} - C_{MA}) \quad (A11)
\]

\[
V_C \frac{d(C_{CA})}{dt} = -v_L(C_{CA} - C_{LAc}) - v_M(C_{CA} - C_{MAc}) \quad (A12)
\]

\[V_C\text{ is the total water volume for the central compartment, } v_L \text{ is the liver blood flow rate, and } v_M \text{ is the blood flow rate to the muscle compartment. } C_{MA} \text{ and } C_{CA} \text{ are muscle and central compartment ethanol concentrations, respectively. } C_{MAc} \text{ and } C_{CAc} \text{ are muscle and central compartment acetaldehyde concentrations, respectively. } C_{LA} \text{ and } C_{LAc} \text{ are liver compartment ethanol and acetaldehyde concentrations, respectively.}\]

5.5. Muscle and fat compartments

The muscle and fat compartment tissue water volume is equal to the sum of tissue water volumes of the muscle and fat tissues. The average perfusion rate for muscle and fat is 0.037 ml/min/ml H2O, which is significantly smaller than that for the other tissues and therefore important to the kinetics of ethanol distribution and elimination. A mass balance on the muscle and fat compartment for ethanol and acetaldehyde gives equations (A13) and (A14), respectively:

\[
V_M \frac{d(C_{MA})}{dt} = v_M(C_{CA} - C_{MA}) \quad (A13)
\]

\[
V_M \frac{d(C_{MAc})}{dt} = v_M(C_{CAc} - C_{MAc}) \quad (A14)
\]

\[V_M \text{ is the volume of the muscle and fat compartment, and } v_M \text{ is the blood flow rate to the muscle and fat compartment. } C_{MA} \text{ and } C_{CA} \text{ are muscle and central compartment ethanol concentrations, respectively. } C_{MAc} \text{ and } C_{CAc} \text{ are muscle and central compartment acetaldehyde concentrations, respectively.}\]

Acknowledgments

We gratefully acknowledge Dr. Richard A. Deitrich (Department of Pharmacology, University of Colorado Health Sciences Center) for helpful discussions.

References

