Sinking & Floating Assessment References:

1998-1999

Assessment Question	Basis
1. Three objects, a rubber eraser, a wooden block	Loosely based on Carol Smith's tasks (1992) which were in turn
side view of the tank of water:	loosely based on Piagetian tasks about floating and sinking objects.
a wooden block an eraser a potato	Carol Smith, Joseph Snir and Lorraine Grosslight (1992), Using conceptual models to facilitate conceptual change: the case of weight-density differentiation, <u>Cognition and Instruction</u> , <u>9</u> (3), 221-283
(a) why do you think the wooden block hoats in the water?(b) Why do you think the eraser and the potato sink in the water?	Also similar to a pretest question in Rowell & Dawson's work which asked children to consider why certain items (provided in lists) float and others sink.
	J.A. Rowell and C. J. Dawson, (1977), Teaching about floating and sinking: An attempt to link cognitive psychology with classroom practice, <u>Science Education, 61</u> (2), 245-253
2. Candles float in water. Here is a picture of a candle floating in water	Based on Biddulph & Osborne's candle task which asked children how a longer piece of a candle would float in comparison to a shorter piece
(a) Please <u>draw a picture</u> of what you think would happen with a very big candle:	Biddulph, F. & Osborne, R. (1984) 'Pupils ideas about floating and sinking', Paper presented to Australian Science Education Research Association Conference, May, Melbourne, Australia.
	Biddulph, F. (1983) Students' views of floating & sinking. Learning in Science Project (Primary). Working Paper No. 116., Waikato University, Hamilton, New Zealand.
Explain why you think this would happen:	
(b) Please <u>draw a picture</u> of what you think the candle would do in a tank with a lot of water:	
 Explain why you think this would happen: Clay is two times heavier than wax. If you put the same size balls of clay and wax on a balance scale it would look like this: 	Based on Piaget & Inhelder's 1974 task in which children were asked to make clay and wax balls that would weigh the same amount.
	Also inspired by Novick & Nussbaum's (1981) paper-and-pencil assessment called "Test About Particles in a Gas".
(a) If you could look at balls of wax and clay with a very very VERY powerful magnifying glass,	Shimshon Novick and Joseph Nussbaum, (1981), Pupils' understanding of the particulate nature of matter: A cross-age study, <u>Science Education, 65</u> (2), 187-196
what do you think the wax and clay balls would look like?	Also used Hibbard & Novak's (1975) idea of having chldren think about a VERY powerful magnifying glass.

Circle the picture you think is like <u>the wax ball</u> .	K. Michael Hibbard and Joseph D. Novak, (1975), Audio-tutorial
Circle the picture you think is like the clay ball .	elementary school science instruction as a method for study of children's concept learning: Particulate nature of matter, Science Education, 59(4), 559-570
(b)Please explain how you decided on your answers:	
 4. Here are two gold bars: GOLD GOLD This is what the smaller gold bar looks like using a very very VERY powerful magnifying glass: 	Loosely based on Smith & Unger's (1997) "dots-per-box" work. Carol Smith and Chris Unger, (1997), What's in dots-per-box? Conceptual bootsrapping with stripped-down visual analogs, <u>The</u> <u>Journal of the Learning Sciences, 6</u> (2), 143-181
 (a) Circle the picture you think is like <u>the large</u> gold bar. 	
(b) Please explain how you decided on your answer:	
5a. A log of <u>oak wood</u> burns much longer than <u>the</u> <u>same size</u> log of <u>pine wood</u> . Explain how this can happen.	Far transfer item. Also loosely based on Smith & Unger (1997). (see question 4)
5b. If you could look at a slice of oak wood and a slice of pine wood with a very very VERY powerful magnifying glass, what do you think the oak and pine wood would look like?	
Circle the picture you think is like the pine wood .	
Circle the picture you think is like the oak wood.	
6a. Here is a chart that shows several characteristics of a set of blocks. Fill in the chart to show what you think Block C would do in water.	Loosely based on Gennaro's work (1981) with 9 th grade students on density.
	Eugene D. Gennaro (1981), Assessing junior high students' understanding of density and solubility, <u>School Science and</u>

Block	Weight	Size	In water this	Mathematics, 81, 399-404
^{A.}	4 g	2 cm ³	sinks	
B.	6 g	12 cm ³	floats	
C.	4 g	16 cm3	?	
6b. How did you decide on your answer?			/er?	
6c.Please explain what you think is the main reason an object will sink or float in water.		e main reason		
7. This brick is 100cm ³ and weighs 200 grams. It sinks in water.		00 grams. It	Inspired by Schauble et al.'s "spring task" (1991, 1996).	
sinks in water. Here are 10 styrofoam blocks: Each of the blocks is 15 cm ³ and weighs 2 grams. If all of these styrofoam blocks are attached to the brick, the whole thing is bigger and heavier. It now weighs 220 grams and is 250 cm ³ . If this whole thing is put into a tank of water, it floats! It floats even though it is bigger and heavier. How can this be?			hs 2 grams. ached to the avier. It now	 Schauble, L., Kopfer, L.E., & Raghavan, K. (1991), Students' transition from an engineering model to a science model of experimentation, <u>Journal of Reseach in Science Teaching, 28</u>, 859-882 Schauble, L. (1996), The development of scientific reasoning in knowledge-rich contexts, <u>Developmental Psychology</u>, <u>32</u>(1), 102-119

Additional References:

- Biddulph, F. (1983) Students' views of floating & sinking. Learning in Science Project (Primary). Working Paper No. 116., Waikato University, Hamilton, New Zealand.
- Biddulph, F. & Osborne, R. (1984) 'Pupils ideas about floating and sinking', Paper presented to Austrialian Science Education Research Association Conference, May, Melbourne, Australia
- Gabel, D.L., Samuel, K.V., and Hunn, D. (1987) Understanding the particulate nature of matter, <u>Journal of</u> <u>Chemical Education, 64</u>(8), 695-697
- Gennaro, E.D. (1981), Assessing junior high students' understanding of density and solubility, <u>School Science and</u> <u>Mathematics</u>, 81, 399-404
- Hewson, M.G.A'B. (1986), The acquisition of scientific knowledge: Analysis and representation of student conceptions concerning density, <u>Science Education</u>, 70(2), 159-170
- Hibbard, K.M., and Novak, J.D. (1975), Audio-tutorial elementary school science instruction as a method for study of children's concept learning: Particulate nature of matter, <u>Science Education</u>, <u>59</u>(4), 559-570
- Kuhn, D. Schauble, L. and Garcia-Mila, M. (1992), Cross-domain development of scientific reasoning, <u>Cognition</u> <u>and Instruction</u>, <u>9</u>(4), 285-327

- Lee, O., Eichinger, D.C., Anderson, C.W., Berheimer, G.D., and Blakeslee, T.D. (1993), Changing middle school students' conceptions of matter and molecules, Journal of Research in Science Teaching 30 (3), 249-270
- Lichtfeldt, M. (1996), Development of pupils' ideas of the particulate nature of matter: In <u>Long-term research</u> <u>project, in Research in Science Education in Europe: Current Issues and Themes</u>, G. Welford, J. Osborne & P. Scott, eds., The Falmer Press, London, 1996, pp. 212-228
- Novick, S. and Nussbaum, J. (1978), Junior high school pupils' understanding of the particulate nature of matter: An interview study, <u>Science Education</u>, 62(3), 273-281
- Novick, S. and Nussbaum, J. (1981), Pupils' understanding of the particulate nature of matter: A cross-age study, <u>Science Education, 65</u>(2), 187-196
- Rodrigues, D. M. (1980), Notions of physical laws in childhood, Science Education, 64(1), 59-84
- Rowell. J.A. and Dawson, C. J. (1977), Teaching about floating and sinking: An attempt to link cognitive psychology with classroom practice, <u>Science Education</u>, <u>61</u>(2), 245-253
- Schauble, L., Kopfer, L.E., & Raghavan, K. (1991), Students' transition from an engineering model to a science model of experimentation, Journal of Reseach in Science Teaching, 28, 859-882
- Schauble, L. (1996), The development of scientific reasoning in knowledge-rich contexts, <u>Developmental</u> <u>Psychology</u>, <u>32</u>(1), 102-119
- Smith, C., Carey, S., and Wiser, M. (1985), On differentiation: A case study of the development of the concepts of size, weight, and density, <u>Cognition</u>, 21, 177-237
- Smith, C., Snir, J., and Grosslight, L. (1992), Using conceptual models to facilitate conceptual change: the case of weight-density differentiation, <u>Cognition and Instruction</u>, 9(3), 221-283
- Smith, C. and Unger, C. (1997), What's in dots-per-box? Conceptual bootsrapping with stripped-down visual analogs, <u>The Journal of the Learning Sciences</u>, 6(2), 143-181
- Snir, J. (1991), Sink or float -- What do the experts think?: The historical development of explanations for floatation, Science Education 75(5), 595-609