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For all problems, SHOW ALL OF YOUR WORK . Partial solutions and problems with missing steps
will be marked wrong. Continue your work on the back of the page or extra sheet at the end of the exam
if you need additional space. You do not need but may use the normal graphing calculator functions of
any graphing calculator, but not any differential equations functionality it may have.

1. Solve each of the following, explicitly if possible and implicitly otherwise. (33 points)

a. 5tdzdt = −10z +
1
t

cos(4t), z(π) = 2.
Solution: This is first order and linear, and it isn’t separable, so we choose to use the
method of integrating factors. Rewritten, the equation is

dz

dt
+

2
t
z =

1
5t2

cos(4t),

so the integrating factor is e
∫

2/tdt = e2 ln(t) = t2. Multiplying through by this, we get
d
dt (t

2z) = 1
5 cos(4t). Integrating both sides, t2z = 1

20 sin(4t) + C, so z = 1
20t2 sin(4t) + C

t2 .
Applying the initial condition z(π) = 2 gives C = 2π2, so that our solution is

z =
1

20t2
sin(4t) +

2π2

t2
.

b. 5z dzdt = (z2 + 1)1/2 cos(4t).
Solution: This problem is first order but non-linear, so we can’t use integrating factors.
Fortunately, it is separable, so we separate variables to get

5z
(z2 + 1)1/2

dz = cos(4t)dt.

Integrating both sides, 5(z2 + 1)1/2 = 1
4 sin(4t) + C, so that

z = ±
√

(
1
20

sin(4t) + C)2 − 1.

c. y′′′ + 4y′ = 0, with y(0) = 0, y′(0) = 1 and y′′(0) = 0.
Solution: This is a third order equation, so essentially our only method is to guess y = ert.
Plugging this in, we get r3 + 4r = r(r2 + 4) = 0. Thus r = 0 or r = ±2i, so the general
solution is

y = C1 + C2 cos(2t) + C3 sin(2t).

The initial conditions require that C1 + C2 = 0, 2C3 = 1, and −4C2 = 0, so C1 = C2 = 0
and C3 = 1

2 . Our solution is then

y =
1
2

sin(2t).
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2. Consider the differential equation 4t2y′′(t) − ty′(t) + y(t) = 0 (which we don’t know how to solve).
(15 points)

a. Show that y1 = t1/4 and y2 = t are solutions to this differential equation (for t > 0).
Solution: To show that these are solutions, we plug them into the equation. y′1 = 1

4 t
−3/4

and y′′1 = − 3
16 t
−7/4, so, plugging in, we have

4t2(− 3
16

)t−7/4 − t(1
4

)t−3/4 + t1/4 = − 3
4
t1/4 − 1

4
t1/4 + t1/4

= 0,

so it is a solution. Similarly, y′2 = 1 and y′′2 = 0, so plugging in gives 0− t+ t = 0, and y2

is also a solution.

b. Write the general solution to the differential equation. What is true about y1 and y2 that allows
you to do this? How do you know?
Solution: The general solution to the differential equation is

y = C1y1 + C2y2 = C1t
1/4 + C2t.

We know we can do this because the problem is linear, and therefore a linear combination
of any two linearly independent solutions gives the general solution. We need, of course,
to be sure that y1 and y2 are linearly independent. This is easily done by noting that they
aren’t constant multiples (for no k is it the case that t1/4 = kt), or by finding that the
Wronskian is nonzero (for t > 0, as indicated above):

W (y1, y2) =
∣∣∣∣ y1 y2

y′1 y′2

∣∣∣∣ =
∣∣∣∣ t1/4 t

1
4y
−3/4 1

∣∣∣∣ = t1/4 − 1
4
t1/4 =

3
4
t1/4.

c. Find the particular solution for the differential equation if y(1) = 3 and y′(1) = 2.
Solution: Plugging t = 1 in to the general solution, above, and its derivative, we get
C1 + C2 = 3 and 1

4C1 + C2 = 2. Subtracting the second from the first gives C1 = 4
3 , so

that C2 = 5
3 . The particular solution is therefore

y =
4
3
t1/4 +

5
3
t.

3. Find |z|, Arg(z) and the exponential (polar) form of z =
(

1
2−2i

)8

. (6 points)

Solution: Let y = 1
2−2i = 1

2 ( 1
1−i ). Multiplying the numerator and denominator of this by

the complex conjugate of the denominator, 1+i, gives y = 1
2 ( 1+i

2 ) = 1
4 (1+i). This is a point

in the first quadrant 45◦ (π4 radians) from the x-axis and a distance |y| = 1
4

√
12 + 12 =

√
2

4

from the origin. Thus y =
√

2
4 eiπ/4. Then

z = y8 = (
√

2
4

)8e2iπ =
24

216
=

1
212

=
1

4096
.

This is the exponential form of z; its modulus |z| = 1
4096 and argument Arg(z) = 0 (or

2π).
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4. An alert turtle named Yert observes that tin organ pipes decay with age as a result of a chemical reaction
which is catalyzed by the decayed tin. As a result, the rate at which the tin decays is proportional to
the product of the amount of tin left and the amount that has already decayed. Let M be the total
amount of tin before any has decayed. (14 points)

a. Write a differential equation for the amount of decayed tin, p(t). Be sure it is clear why your
equation has the form it does.
Solution: The equation is

p′(t) = k(M − p(t))p(t).

This says that the rate of change in the decayed tin, p′(t) (which is the same as the rate at
which tin decays) is proportional to (k) the product of the amount of tin left (M − p(t))
and the amount that has already decayed (p(t)). Exactly as we want.

b. Draw a phase diagram for your differential equation (take M = 10 and your constant of propor-
tionality, k = 2, if you like) and explain what this tells you about the decay of the tin if initially
none of it is decayed. How does this change if there is a very small amount decayed initially?
Solution: This equation is autonomous, so it makes sense to talk about equlibrium points.
The equilibrium points are where p′(t) = 0, which are when p(t) = 0 or p(t) = M . (M is
an amount of tin, so M > 0. If p(t) < 0, p′(t) is the product of a positive and a negative
term, and so is negative. If 0 < p(t) < M , p′(t) is the product of two positive terms, and so
is positive, and if p(t) > M , p′(t) < 0. Thus the amount of decayed tin p(t) is decreasing,
increasing and decreasing respectively in these regions (never mind that it doesn’t make
sense for p(t) to be less than 0 or greater than M), and our phase diagram is the following:

0 M p

Because p(t) = 0 is an equilibrium solution, if there is no decay initially the tin will
never decay. However, if there is a small amount of decay the phase diagram tells us that
eventually all of the tin will decay.
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5. Sketch solutions to the differential equation whose direction
field is shown to the right through the initial conditions y(0) =
1 and y(−2) = −1. Then carefully explain how you know
that the direction field is not the the direction field for the
differential equation dy

dx = x− sin(y). (8 points)

Solution: Note that for the given differential
equation, at (0, 1) the slope is dy

dx = − sin(1) and
at (1, 0) it is dy

dx = 1. Thus at these points the di-
rection field lines should have negative and pos-
itive slope, respectively. However, this is clearly
not the case for the given direction field. Thus
the direction field can’t be that for this differen-
tial equation. (Sketching the solutions is left for
the reader.)
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6. The initial value problem yy′ = y − y2, y(0) = 0 has two solutions. (14 points)

a. Does this conform to or contradict the existence and uniqueness theorem for first-order ordinary
differential equations? (Recall that the theorem starts “For y′(x) = f(x, y), if the function f(x, y)
is. . . ”)
Solution: This must conform to the theorem (or else it wouldn’t be a theorem, after all).
In this case, we have the differential equation

y′ =
y − y2

y
= f(x, y),

for which the function f(x, y) is discontinuous when y = 0. For the theorem to apply f
must be continuous at and near the initial condition. Thus the theorem can’t be applied,
it therefore says nothing about this initial value problem, and there can be two solutions
without perturbing us in the least.

b. Find the two solutions to yy′ = y − y2, y(0) = 0.
Solution: By inspection, one such solution is y = 0. If y 6= 0, we can divide it out to
get y′ = 1 − y. The solution to this is y = Ce−x + 1, and to satisfy the initial condition
C = −1. Thus a second solution is y = 1− e−x.

7. A not entirely defensible numerical method for approximating the solution to the differential equation
dy
dx = f(x, y) might use the iteration formula yn+1 = yn + hf(xn, z), where z = yn + 1

2hf(xn, yn).
Approximate y(0.2) using h = 0.1 and this numerical method (tentatively called “Yert’s method”) if
dy
dx = 2− xy2 and y(0) = 0.5. (10 points)

Solution: Let’s make a table of values:
n xn yn f(xn, yn) z f(xn, z) yn+1

0 0 .5 2 − 0 = 2 .5 + .05 · 2 = .6 2 − 0 = 2 .5 + .1 · 2 = .7
1 .1 .7 2− .1 · .72 = 1.951 .7 + .05 · 1.951 = .798 2− .1 · .7982 = 1.936 .7 + .1 · 1.936 = .894
2 .2 .894

So y(0.2) ≈ 0.894.


