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Measuring Ordinal Association in Situations That Contain Tied Scores 
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The construal of ties is critical for assessing the association between two variables. Ties should be 
excluded when the investigator's data-collection procedure forces ties to occur (e.g., a J-place rating 
scale is used to rate K items, with J < K; a criterion variable contains fewer than K possible outcomes 
per item). Four measures arising from excluding or including ties on 2 ordinal variables are Good- 
man & Kruskal's G, Somers's dr~ , Kim's d~.x, and Wilson's e. In contrast to measures having vari- 
ance-accounted-for interpretations, probabilistic interpretations developed here can be applied 
meaningfully both to ordinal-scaled variables and to stronger scales. Recommendations are offered 
for which measure to use in various situations. 

Hypotheses in psychology about the ~ a c i a t i o n  between two 
variables are typically ordinal in nature (e.g., one variable is 
hypothesized to increase monotonically as another variable in- 
creases or decreases), and many scales in psychology might best 
be treated as ordinal (for an elaboration, see Surber, 1984; Town- 
send & Ashby, 1984). However, the choice of  a measure for the 
degree of. ordinal association becomes problematic when ties 
occur in either (or both)  of  the variables (Kendall, 1955). 

This article evaluates a family of four measures of  ordinal 
association in situations that contain tied scores on one or the 
other (or both) of  the two variables, presents new probabilistic 
interpretations for those measures, and offers a new algorithm 
for determining which measure to use in each situation. The 
occurrence of  tied scores is frequent in diverse areas of  psychol- 
ogy including cognitive, developmental, clinical, and social psy- 
chology, as well as other areas outside of  psychology (e.g., busi- 
ness, marketing, meteorology, sociology, and law). The present 
evaluation, probabilistic interpretations, and algorithm can be 
applied in all of  those si tuations.  

A Specific Instantiation: Accuracy of Predictions 
In explaining the nature of  our approach and the role of ties 

for ordinal association in general, we refer to a particular situa- 
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tion in which the investigator desires to assess the accuracy of  
the ordinal aspects of  people's predictions. We have selected this 
example because it provides a good illustration of  how different 
kinds of  ties can arise and should be treated, and because it 
builds on our earlier, related work (e.g., Nelson, 1984). The 
conclusions about the treatment of  ties in this example, and 
the corresponding choice and interpretation of  a measure, can 
easily be extended to any situation in which the degree of  ordi- 
nal association between two variables is assessed. Thus, our al- 
gorithm is intended to be applied broadly, and other examples 
of  potential applications are mentioned at the end of  the article. 

In the assessment of predictive accuracy, one variable is desig- 
nated as the predictor variable and is comprised of  some number 
of  ordered levels; another variable is designated as the criterion 
variable and is comprised of some number of ordered levels; the 
two variables do not necesmdly have the same number of levels. 
The ordering for the predictor variable can be derived from a per- 
son's paired comparisons or rankings (e.g., Nelson & Narens, 
1980), from rating scales (e.g., Nelson, 1984), fromnumerical  
probability judgments t (e.g., Yates, 1990 ), or from nonnumerical 
probability judgments (e.g., Wallsten, Budescu, Rapoport, Zwick, 
& Forsyth, 1986). Consider a judge attempting to predict his or 
her peaqormance on each of several binary outcomes (e.g., perfor- 
mance at recalling the answers to general-information questions). 
The central issue is the degree to which the ordering on the predic- 
tor variable matches the ordering on the criterion variable, but 
frequently this is difficult to establish because of  the presence of  
ties. 

We focus exclusively on measures of ordinal ~ t i o n  and, 
therefore, do not review issues surrounding tests of  different 
models of  independence (see Clogg & Shihadeh, 1994, for a 
review), nor do we review indices based on the log-linear model 

t In the special case of numerical probability judgments, we deal with 
resolution (aka discrimination ), which is the degree to which the overall 
performance being predicted differs across the various levels of ordered 
predictions. Some researchers also assess calibration, an index of how 
closely numerical probability estimates for events match the relative 
frequency of those events. Lichtenstein and Fischhoff( 1977 ) concluded 
that resolution, in comparison with calibration, "is a more fundamental 
aspect ofprobabilistic functioning" (p. 181 ). 
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(e.g., Goodman, 1991 ). As explained below, the measures of ordi- 
nal association reviewed here are based on the notion of  a qualita- 
tive comparison between a pair of items (or subjects ), and we pro- 
pose a straightforward probabilistic interpretation for each mea- 
sure: the probability that if the value for Item A (or Person A) is 
greater than the value for Item B (or Person B) on the predictor 
variable, then the value of A is greater than the value of B on the 
criterion variable. This contrasts with the goal of  model testing 
where the interest is in finding the best-fitting model according to 
a goodness-of-fit criterion. 

D y a d  as Uni t  o f  Analysis 

The primitive concept for the present formulation is qualita- 
tive (see Narens & Luce, 1993, p. 128), in particular a qualita- 
tive comparison of two items, which is referred to as a dyad 
(Costner, 1965; Goodman & Kruskal, 1954; Kruskal, 1958; 
Nelson, 1984). A dyad is comprised of the joint outcome of  one 
item versus another item on the predictor variable and on the 
criterion variable. For instance, one dyad is the joint outcome 
of ( 1 ) Item A being predicted to do better than Item B, and (2) 
Item A doing better than Item B on the criterion variable. The 
dyad is appropriate as the primitive concept for an analysis of  
ordinal association because it is the smallest possible unit in- 
volving a comparison of one item with any other item. 

When the ordering between the two items on the predictor 
variable is consistent with the ordering of the same two items 
on the criterion variable (i.e., Ap > B v and A¢ > Be, where sub- 

scripts denote predictor [p] and criterion [c]), the dyad is a 
concordance, and the total number of  concordances is desig- 
nated as C. Of course, the judge might have rated Item A more 
likely to be recalled than Item B, yet subsequent recall was cor- 
rect for Item B and not Item A (i.e., A v > Bp and A¢ < B¢). 
This is a discordance, and the total number of discordances is 
designated as D. 

Ties may occur on one or both variables. The dyad consisting 
of Item A and Item B may be tied on the predictor variable (i.e., 
Ap = Bp) but ordered on the criterion variable (e.g., A~ > Be). 
Therefore, this dyad is "not tied on the criterion variable," and 
the total number of  these dyads is designated as Tp. Conversely, 
a dyad may be tied on the criterion variable (i.e., A¢ = B~) but 
ordered on the predictor variable (e.g., Ap > Bp). This dyad is 
"not tied on the predictor variable," and the total number of  
these dyads is designated as T¢. Finally, a dyad may be tied on 
both the predictor and ~ e  criterion variables, and the total 
number of those dyads is designated as Tvc. 

Equation 1 shows that the total number of  dyads (the combi- 
nation of K items taken two at a time) is a sum of the five kinds 
of dyads: 

K ( K - 1 ) / 2 = C + D + T v + T ~ + T ~ .  (1) 

The decomposition into the five kinds of dyads is shown in the 
Appendix. 

Table I shows hypothetical data for one person. The predictor 
variable in this example, predicted likelihood of recall, has 
three possible values: low, medium, and high. The criterion 
variable in this example, recall, has two possible values: correct 
or wrong. The eight items produce a total of  28 dyads. We now 

Table 1 
Examples of Item Prediction and Their Correspondence 
Criterion Performance 

to 

Item Predictions Criterion 

1 High Wrong 
2 Medium Correct 
3 Low Wrong 
zl Medium Wrong 
5 High Correct 
6 Low Wrong 
7 High  Correct 
8 Medium Wrong 

Note. An example of item prediction is predicted likelihood of recall. 
An example of criterion performance is correct versus wrong recall. 

decompose these 28 dyads using the notation i & j to refer to 
the dyad between Item i and Item j. Ten of  the 28 dyads are 
concordances: 2 & 3, 2 & 6, 3 & 5, 3 & 7, 4 & 5, 4 & 7, 5 & 6, 5 
& 8, 6 & 7, and 7 & 8; only 1 dyad is a discordance: 1 & 2. The 
remaining 17 dyads have a tie on one or both variables. Four 
dyads are not tied on the criterion: I & 5, 1 & 7, 2 & 4, and 2 & 
8;10 dyads are not tied on the predictor: 1 & 3, 1 & 4, 1 & 6, 1 
& 8, 2 & 5, 2 & 7, 3 & 4, 3 & 8, 4 & 6, and 6 & 8;and 3 dyads 
are tied on both the predictor and the criterion: 3 & 6, 4 & 8, 
and5 &7. 

A Family o f  Four  Measures 

When ties do not occur, every dyad is either a concordance or 
a discordance, and the relative preponderance of  concordances 
to discordances is summarized by 

( C -  D ) / [ K ( K -  1)/2],  (2) 

which has the difference between the number of  concordances 
and discordances in the numerator and the total number of  dy- 
ads in the denominator. Equation 2 is equivalent to the index 
proposed by Kendall (1955), which he called tau. Under the 
special case when ties do not occur ( i.e., To, Tp, and Tvc all equal 
0), tau and the four measures reviewed below are all equivalent. 

Kendall (1955) claimed that tau should not be used when 
ties occur. Although Kendall offered several alternatives to tau, 
none of  them were on strong statistical footing or gained accep- 
tance (Kruskal, 1958). The first accepted extension of  Ken- 
dali's tau was proposed by Goodman and Kruskal (1954) in a 
measure they called gamma (see Kruskal, 1958, for a historical 
review). Gamma is defined as 

G = ( C -  D ) / ( C  + D), (3) 

where G is the sample estimate of  gamma. Gamma handles the 
problem of ties by eliminating from consideration all dyads that 
contain ties. Freeman (1986) pointed out that "some writers 
have criticized gamma for the 'undesirable property' of  restrict- 
ing its calculations only to untied pairs. This property, however 
is neither a flaw nor a weakness" (p. 63). Indeed, the question 
of  how to handle ties has been a central problem, and below we 
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present an algorithm for deciding when tied dyads are relevant 
or irrelevant. 

We do not consider in this review the rank correlation known 
as Spearman's rho. Spearman's rho, like tau, has difficulties 
with the way it handles ties (see Kendall, 1955); for example, 
for the situation shown in Table l,  Spearman's rho could not 
attain a value of  + 1.0, even if  the three corrects and the five 
wrongs on the criterion variable were rearranged to maximize 
predictive accuracy. 

Sociologists proposed three other measures of  ordinal associ- 
ation that are related to gamma, so as to explore different defi- 
nitions ofmonotonicity (Freeman, 1986; Wilson, 1974), to for- 
mulate asymmetric measures of  ordinal association (Kim, 
197 l; Somers, 1962), and to use the property of  proportion re- 
duction in error (PRE) interpretation, which is a desirable 
property for measures of  association and prediction (Freeman, 
1986; Kim, 1971; Somers, 1962, 1968). These three other mea- 
sures count ties as inaccuracies in the sense that relevant ties are 
included in the denominator. 

For comparing these three indices, consider the general 
quantity 

( C -  D ) / ( C  + D + Ti) ,  (4)  

where Ti is the number of  ties considered to be relevant. 
Gamma defines T~ = 0 .  The measures proposed by Kim 
(1971), Somers (1962), and Wilson (1974), which are sum- 
marized in Table 2, differ in which tied dyads are consider rele- 
vant. Because the measures under consideration have the same 
numerator but differ in their denominators, their relative mag- 
nitudes are known a priori. Gamma is always greater than or 
equal to Kim's, Somers's, and Wilson's measures; Wilson's e is 
always less than or equal to gamma and to Kim's  and Somers's 
measures (Freeman, 1986). To illustrate, the data in Table 1 
yield the following: Goodman and Kruskal 's  (1~54) G = .82, 
Kim's  dy.x = .60, Somers's dr, = .43, and Wilson's e = .36. 

Probab i l i s t i c  In t e rp re t a t ions  

The interpretation of predictive accuracy can be formalized 
in terms of  the following conditional probability developed by 

Nelson ( 1984, p. 112) for interpreting gamma: the likelihood 
that Item A is greater than Item B on the criterion variable, 
given that Item A is greater than Item B on the predictor vari- 
able, that is, Pr(Ac > Bc]Ap > Bp). [Note: For situations in 
which either there are no ties or all ties are ignored, the condi- 
tional probability Pr(A¢ > Bc lAp > Bp) and the opposite condi- 
tional probability Pr(Av > BplA¢ > Be) yield identical values.] 
Discussions of  how this probabilistic interpretation can be a 
foundation for predictive accuracy occur in Nelson (1984), and 
examples of  its use occur in Nelson, Leonesio, Landwehr, and 
Narens (1986) and in Nelson and Dunlosky ( 1991 ). 

We now re-express Pr(A¢ > B¢IAp > Bp) by the following 
equation to facilitate generalization to the other three measures 
under consideration: 

Pg= Pr(A~> B c & A p >  B v l A & B n o t t i e d o n p o r c ) ,  (5)  

which indicates the probability of  a concordance given that all 
ties between A and B on either the predictor variable or the cri- 
terion variable are excluded. Ps denotes the probabilistic inter- 
pretation for gamma. 

When the number of  concordances is equal to the number of  
discordances (e.g., random responding), there is no predictive 
accuracy for a given set of  items, and therefore Ps = 0.5 (Nelson, 
1984). When predictive accuracy is perfect, Ps = 1.0. 

Re la t ionsh ip  Between the  Fou r  Measu res  and  T h e i r  
Probab i l i s t i c  In t e rp re t a t ions  

The measure G is linearly related to the conditional proba- 
bility Ps by the formula Ps = 0.5 + 0.5G (for derivations, see 
Nelson, 1984, p. 116; Kruskal, 1958, p. 822; Costner, 1965, p. 
347). This linear relationship provides a straightforward inter- 
pretation of  G (e.g., G = 0.50 corresponds to Pg = 0.75, or a 
probability of  0.75 for a concordance). 

The other three measures of  ordinal association (i.e., Kim's, 
1971, dy.x; Somers's, 1962, dyx; and Wilson's, 1974, e) are also 
linearly related to a correspondingly defined conditional prob- 
ability (for derivations, see the Appendix).  Let the subscripts k, 
s, and w denote Kim's,  Somers's, and Wilson's measures, re- 
spectively. Then, because Kim's  dy.x includes in the denomina- 

Table 2 
Measures of  Ordinal Association as a Function of  Ties on the Predictor and 
the Criterion Variables 

Predictor variable 
Criterion 
variable Exclude ties Include ties 

Exclude ties Goodman & Kruskars (1954) G Kim's ( 1971) dy.x 
(C - D)/(C + D) (C - D)/(C + D + Tp) 

Include ties Somers's (1962, 1968) d~ Wilson's (1974) e 
(C - D)/(C + D + To) (C - D)/(C + D + Tc + Tp) 

Note. All four measures have the same numerator (the difference between concordances and discordances) 
but differ in the number of ties, if any, that appear in the denominator. The denominator is the sum of 
concordances, discordances, and relevant ties. C = frequency of concordances; D = frequency of discor- 
dances; Tc = frequency of dyads tied on only the criterion variable; Tp = frequency of dyads tied on only 
the predictor variable. ~, 
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tor the dyads that are tied only on the predictor variable, the 
corresponding conditional probability is 

Pk = Pr(A¢> B c & A v >  B p l A a n d B n o t t i e d o n c ) ,  (6) 

and Kim's dy.~ is linearly related to Pk by the formula 

Pk = 0.5 + 0.5 dy.~ - 0.5 Pr(Tp), (7) 

where Pr(Tv) is the proportion of dyads that are tied on only 
the predictor variable. 

Similarly, Somers's (1962) dy~ corresponds to the conditional 
probability 

Ps = Pr(A¢> B c & A p >  BplAandB not tied on p) (8) 

and is linearly related to Ps by 

P~ = 0.5 + 0.5 dyx - 0.5 Pr(T~). (9) 

Previous investigators have advocated the use of  Kim's ( 1971 ) 
dy.x and Somers's dyx in situations when it is appropriate to pe- 
nalize the judge for ties (Liberman & Tversky, 1993; Nelson, 
1984, p. 112). 

Finally, Wilson's (1974) e corresponds to the conditional 
probability 

Pw = Pr(A¢ > Be& Av> BvlA and B not tied on both p and c) 

(lo) 

and is linearly related to Pw by 

Pw = 0.5 + 0.5 e - 0.5 [Pr(T v) + Pr(Tc)]. ( l l )  

Algor i thm for Deciding Which  Ordina l  Measure to Use 

Consider the case when the judge states two items are identi- 
cal on the predictor variable, and the judge intends the tie. By 
intend, we mean only that the procedure did not force the judge 
to respond with a tie, but nevertheless he or she did respond 
with a tie. Contrast this with another case in which the judge 
would like to place two items in different categories, but the 
response scale does not allow the judge an opportunity to ex- 
press that difference. Thus, the procedure forces the judge to 
place in the same category the two items believed to be different. 
This occurs whenever the number of items exceeds the number 
of  allowable points on the response scale. An example is shown 
in Table l, where a 3-point scale is used to predict performance 
on each of the eight items; even if the judge believed all eight 
items to be different from one another, the belief could not be 
shown on a 3-point scale. It is always the case that when a J- 
point scale is used to evaluate K items with J < K, then the 
judge is not allowed to indicate that all items are untied, and 
therefore at least some ties are necessarily forced by the 
procedure. 

A corresponding analysis of  ties can be made on the criterion 
variable. A tie might occur because two items are, in fact, iden- 
tical on the criterion variable. However, ties might also occur 
when potentially more categories underlie the criterion variable 
than are distinguished by the measuring instrument (e.g., what- 
ever underlies the criterion variable is continuous, but the mea- 

surement is discrete, as in the case of "memory strength" un- 
derlying recall performance; see Table 1 ) or because the mea- 
suring instrument is insensitive at detecting the difference on 
whatever underlies criterion performance. These ties are also 
forced by the procedure. 

When the experimenter knows that the ties were intended, 
there is no ambiguity as to how to interpret ties. I fa  judge gave 
two items the same prediction (and could have given them 
different predictions), but the two items differ on the criterion 
variable, then that dyad is an incorrect prediction. Such in- 
tended ties are unambiguous with respect to interpretation. 
When all ties on a particular variable can be interpreted as in- 
tended, then the incorrect ties should count against the judge's 
score of predictive accuracy. 

However, when some of  the ties might be forced by the proce- 
dure, then the experimenter has an epistemological problem, 
because any particular observed tie could have been either in- 
tended or forced by the procedure. Thus, the tie is ambiguous, 
and the judge's predictive accuracy score should not be penal- 
ized for such ties. 

In summary, ties that are forced by the procedure are con- 
strued as ambiguous because a finer scale might not have 
yielded those ties. Only when an investigator can be sure that 
the judge intended the ties and when the ties on the criterion 
variable are not forced by the procedure can the tied dyads be 
legitimately construed as unambiguous and interpretable. 

Table 3 shows the recommended measures that arise from the 
combinations of  different patterns of  ties on the predictor and 
criterion variables. The proposed algorithm is that ties on a 
given variable that are ambiguous (in the meaning described 
above) should be excluded from the denominator because those 
dyads are uninterpretable. Only when all of the ties are unam- 
biguous should the dyads containing those ties be included in 
the denominator. That is, the judge is penalized for incorrect ties 
when those ttes are interpretable, but the judge is not penahzed 
for incorrect ties when they are ambiguous and might be due to 
only a procedure that forced the ties to occur. This recommen- 
dation is in accord with Costner's (1965) suggestion that "such 
tied p a i r s . . ,  are discarded as pairs for which order on at least 
one variable is indeterminate" (p. 346). 

Accordingly, when both variables contain some ambiguous 
ties, Goodman and Kruskal's (1954) G should be used. When 
ambiguous ties occur, the designation of  a concordance or dis- 
cordance cannot be made for all the available data (although 
perhaps it could be made with more sensitive data-collection 
procedures). The measure G uses only the dyads that are inter- 
pretable with respect to strict orderings, namely, concordances 
and discordances. 

When all of the ties on both variables are unambiguous, then 
the ties on the predictor variable and ties on the criterion vari- 
able should be included because the judge's predictions are un- 
ambiguously incorrect. Then Wilson's (1974) e should be used. 

The arguments made above are easily extended: Exclude ties 
from any variable that contains ambiguous ties, and include ties 
from any variable that contains only unambiguous ties. This 
leads to Kim's ( 1971 ) dy.x when ties on the predictor variable 
(but not on the criterion variable) are unambiguous and to 
Somers's ( 1962 ) dyx when ties on the criterion variable (but not 
on the predictor variable) are unambiguous. 
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Table 3 
Recommended Measures of Predictive Accuracy (and their Probabilistic Interpretations) for Various 
Combinations of Ties on the Predictor and the Criterion Variables 
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Ties on the predictor variable 
Ties on the criterion 

variable Forced by procedure (exclude ties) Not forced by procedure (include ties) 

Forced by procedure Goodman & Kruskal's ( ! 954) G Kim's (1971) ~.x 
(exclude ties) Pr(A~ > B¢ & A v > B v I A & B not tied on p or c) Pr(A¢ > Bc & Ap > Bp I A & B not tied on c) 

Not forced by procedure Somers's ( 1962, 1968) dyx Wilson's (1974) e 
(include ties) Pr(A~ > Bc & A v > B v I A & B not tied on p) Pr(A¢ > B~ & Ap > Bp [ A & B not tied on both p and c) 

Note. The upper entry in each cell is the measure of predictive accuracy, and the lower entry is the probabilistic interpretation for that measure. 
The relation between each measure, m, and its probabilistic interpretation, Pro, is linear by the equation Pm = 0.5 [1 - Pr(Ti) + m], where Pr(T;) is 
the proportion of dyads in the denominator of m that contains ties (see text). Pr = probability; p = predictor; c = criterion. 

Perfect  O r d i n a l  Assoc ia t ion  

Whenever one of the variables contains fewer potential levels of 
measured fineness than the other, ties can occur that are forced by 
the procedure. Having different numbers of measurement catego- 
ries on the two variables is a sufficient reason to exclude dyads that 
are tied on the variable with fewer categories but ordered on the 
variable with more categories (cf. Somers, 1962 ). Such tied dyads 
are ambiguous because they are forced by the procedure, and a 
finer categorization scheme might have broken the ties. This has 
obvious implications for situations where one of the two variables 
is a predictor variable and the other is a criterion variable: When- 
ever the predictor variable has fewer categories than the criterion 
variable, the investigator should choose between the two measures 
in column l of Table 3, with the choice being contingent on the 
interpretability of ties on the criterion variable (see Algorithm for 
Deciding which Ordinal Measure to Use). Whenever the crite- 
rion variable has fewer categories than the predictor variable (e.g., 
Table l ), the investigator should choose between the two measures 
in row 1 of Table 3, with the choice being contingent on the inter- 
pretability of ties on the predictor variable (see same section as 
cited above). 

Ideally, the interpretability of  ties should be considered prior 
to the data collection. If the investigator does not want to elicit 
ambiguous ties from the person and does not want ambiguous 
ties to occur on either variable, then a different data-collection 
procedure may be needed. For example, a person could do a 
ranking task with the understanding that ties are allowed and 
will be interpreted as intended (e.g., Liberman & Tversky, 
1993), or the investigator could use finer-grained performance 
tasks to reduce or eliminate ambiguous ties. Additional discus- 
sion of  how problems of interpretability can be solved during 
data collection rather than during data analysis occurs in Bla- 
lock (1974) and in Nelson and Narens (1980). 

S u m m a r y  a n d  R e c o m m e n d a t i o n s  

The four measures reviewed above have a straightforward 
probabilistic interpretation and do not involve other potentially 
problematic formulations such as variance accounted for (e.g., 
Birnbaum, 1973; Surber, 1984). The proposed algorithm is that 
ties should be included only when they are unambiguously in- 
tended by the person and when the observed performance could 

have yielded no ties among the items, and that ties should be 
excluded whenever they are forced by the data-collection pro- 
cedure. The data-collection procedure forces ties whenever 
there are not enough measurement categories on either (or 
both) of  the two variables being correlated to assign every item 
a unique value on each variable. For instance, in the special case 
where the two variables consist of  a predictor variable and a 
criterion variable, the data-collection procedure forces ties 
whenever there are not enough measurement categories for the 
judge to assign each to-be-judged item to a value on the predic- 
tor variable that i s  different from the value assigned to every 
other to-be-judged item, or whenever the investigator does not 
have a fine enough measurement of  criterion performance to 
allow each i tem to have a unique level of  criterion performance. 
Such situations are frequent (e.g., Table 1 ). 

Easy computational formulas for all five kinds of dyads appear 
in articles by Kim(  1971 ) and by Wilson(1974), and the measure 
G is available in the BMDP and SPSS statistical packages and in a 
stand-alone BASIC program (Nelson, 1986). Tests of significance 
for a single G or a single Somers's (1962) dr~ are given in a book 
by Siegal and Castellan (1988). Although the statistical analyses 
are conducted on a measure of association, the statistical conclu- 
sions extend directly to the probabilistic interpretation because 
these four measures of association are related to their correspond- 
ing probabilistic interpretations by a linear transformation (for 
rationale, see Townsend & Ashby, 1984). 2 

Research domains in which an investigator might apply the 
present algorithm and probabilistic interpretations to evaluate 
hypotheses about the degree of  ordinal association are ubiqui- 
tous in cognitive psychology (e.g., Does subsequent memory 
performance increase as people's ratings of  what they know 
increases?), developmental psychology (e.g., Does the fre- 

z Statistical conclusions for the three measures of ordinal association 
dy.x, d~, and e (in contrast to those for G) may differ when the measures 
are converted to their probability scores if people have different propor- 
tions of relevant ties. Even though the transformation between the mea- 
sures dy.x, d~, e, and their respective probabilistic interpretations is lin- 
ear within subjects, each person's intercept is a function oftbe propor- 
tion of relevant tied dyads; if an investigator wants to compare the 
probabilistic interpretation across conditions for those three measures, 
the proportion of relevant ties can be used as a blocking variable. This is 
not a problem for G because all ties are excluded from its computation. 
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quency of  some particular kind of  response increase with age?), 
personality and individual-difference psychology (e.g., Do peo- 
ple who have more of this trait also have more of  that trait?),  
clinical psychology (e.g., Does more of  this t reatment  yield a 
greater likelihood of  a cure for the problem?),  industrial  psy- 
chology (e.g., Do people who have more of  this leadership trait 
also obtain greater productivity from their workers?), social 
psychology (e.g., Are people who have more of  this attitude 
more likely to vote in an election?), sport psychology (e.g., Do 
players who practice more of  this also perform better during a 
contest?), animal  psychology (e.g., Do animals who eat more of  
this also show more of  that behavior?), and educational psy- 
chology (e.g., Do students who receive more of  this t reatment  
when studying also obtain higher test scores?). 
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Appendix 

Composition of Dyads and the Relation Between the Four Measures of Ordinal Association and 
Their Conditional Probabilities 

We illustrate the decomposition of K objects into dyads. The objects 
represent the unit of analysis (e.g., items, subjects ). For K objects, there 
are K(K - 1 ) /2 unique dyads. Assuming the trichotomy law holds 
(MacLane & Birkhoff, 1988 ), one of the following relations must be 
true for each pair of objects on the predictor variable: A > B, A = B, or 
A < B, and one of these relations must also be true for each pair of 
objects on the criterion variable. For example, two items are either or- 
dered or judged as equivalent (e.g, indifference) on the predictor vari- 
able, and the same two items are either ordered or judged as equivalent 
on the criterion. These relations can be either qualitative or quantitative. 
In this article, we do not discuss the issues underlying indifference but 
refer the reader to Luce's (1956) treatment of semiorder. 

The K(K  - 1 ) /2  unique dyads can be decomposed into Table AI, a 
3 × 3 table of frequencies (the cell entries are frequencies). 

The frequency of concordances (C), discordances (D),  ties only on 
the predictor variable (T a), ties only on the criterion variable ( Tc ), and 
ties on both predictor variable and criterion variable (T~)  are given by 
the sums of the relevant entries in Table A I. Specifically, 

Table A 1 

A 3 X 3 Table o f  Frequencies 

Prediction 

Criterion A v > Bp Ap = Bp A v < I~ 

A~>Bc a b c 
A~=Bc d e f 
A t < B e  g h i 

Note. c = criterion; p = prediction. 

as m = ( C - D ) /(  C + D + T~ ), and a general expression for the proba- 
bility of  a concordance for measure m is C / (  C + D + Ti ). 

The measure m is linearly related to I'm. From the definition of m, we 
derive 

C = a + i  

D = c + g  

%=b+h 

Tc=d+f 

T ~ = e .  

m = ( C -  D ) / ( C +  D +  Ti) 

= C / ( C  + D + T~) - D / ( C  + D + T l )  

= Pm- D/(C + D + T i )  

= Pm - [1 - ( C  + T , ) / ( C  + D + T t ) ]  

=2Pro- I + Pr(T~) 

Note that all four measures reviewed in this article ignore the cell e, the 
frequency T~ (tied on both variables). 

The four measures of ordinal association reviewed in this article have 
the same numerator (C - D) but different denominators. In general, the 
denominator can be expressed as C + D + T~, where T,. is the number of 
relevant ties. For example, when computing the measure G, T~ = 0 he- 
cause the measure G does not include any dyads with ties. When com- 
puting Wilson's (1974) e, T~ = Tp + To. Thus, a general expression for 
the four measures of ordinal association considered here can be written 

The term Pr(T~ ) is the proportion of ties considered relevant by the 
particular measure. 

Rearranging terms yields a general relationship between P= and the 
measure of ordinal association m: Pm = 0.5 + 0.5 m - 0.5 Pr(T/).  
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