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Currently, a controversy is dividing
physicists: Do the basic laws of nature
operate only at the level of elemen-

tary particles (the reductionist position) or
also (and differently) at higher levels of mat-
ter? If proponents of the former position are
correct, then a complete explanation of
physics can be achieved by studying the most
basic particles in isolation. A similar contro-
versy has long divided researchers in person-
ality and social psychology: Do the basic
laws of behavior operate only at the level of
the individual person or also (and differently)
at higher levels of social interaction? Are
dyads and groups somehow more than the
sum of their individual constituents? Do
they have a level of existence that cannot be
defined in individualistic terms? Can we

understand human psychology by studying
one human at a time?

Let us be candid about what this chapter
will accomplish: We do not offer answers to
the thorny questions we posed above.
Instead, we offer some methodological point-
ers for thinking about dyadic and group data
in ways that help clarify what these questions
mean. We explore, through several graphical
examples, the interpretational complexities
that are part and parcel of any dyadic or
group design. Our approach has both a neg-
ative agenda—to point out common pitfalls
of dyadic analysis—and a positive agenda—
to explore the conceptual benefits of marry-
ing theory and methodology in the study of
dyads and groups. In particular, we encour-
age researchers to “think outside the box”
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when analyzing dyadic data—where the box
represents the confines of standard data ana-
lytic methods and is defined by the classic
assumption of “independent” data points.

There is no doubt that traditional analytic
methods encourage a reductionist or individu-
alistic perspective, which has a long and hon-
ored tradition in social psychology. Social
psychology, at least in the American tradition,
has been defined as the study of the individual
in a social context. Even though the most com-
mon, pervasive, and powerful social contexts
are those made up of other people, it is no acci-
dent that most of the great demonstrations of
the “power of the situation” feature an active
individual facing an impassive and inflexible
social group. Whether it is the unyielding and
unanimously mistaken majority of Asch’s con-
formity studies, the magisterial and unshakable
experimenter of Milgram’s compliance studies,
the forbidding and frightening scientist of
Schachter’s fear and affiliation studies, or the
unconcerned and distracted onlookers of
Darley and Latane’s bystander intervention
studies, the social context—that is, the other
people—is constrained to uniformity to
provide a controlled experience for the “real”
participants in the studies.

There are good reasons for the individual-
istic approach of classic experiments on the
influence of “social” context. The experi-
mental method itself, the manipulation and
control of factors that allows the experi-
menter to draw the cherished causal infer-
ence, brings with it some basic ground rules:
Individuals within conditions should be
treated exactly alike to eliminate confound-
ing and to reduce within-cell error variance.
The standard between-subjects analysis of
variance, which goes hand in hand with the
simple factorial experimental design so
beloved by classic social psychologists,
requires that each data point has “indepen-
dent and identically distributed errors”
(known as the IID assumption). Each partici-
pant in a study is explicitly required to be

independent of every other participant
except for the common effect of the manipu-
lation. Thus, the very issue of how people
combine, interact, and affect each other is
stripped away from the classic experimental
design in social psychology.

The decision to remove actual group inter-
action from the standard toolkit of social psy-
chologists was a deliberate and considered
one. It marked the end of the ascendancy of
the “group dynamics” approach developed by
Lewin and his students and colleagues. This
change in emphasis and design reflected both
statistical and theoretical influences. Group
dynamics researchers who had studied actual
groups—their interactions and changes over
time—became frustrated with the amount of
effort required to gain one additional data
point, because the independence assumption
meant that responses from all members of a
group were aggregated or collapsed into a
single value (usually the group mean).
Furthermore, the main outcome variables of
interest shifted from qualities of the group
(e.g., group cohesion, norms, intergroup com-
munication, group performance) to qualities
of individuals (e.g., anxiety, attitude change,
attribution, individual performance). Theories
that once focused on the forces that held
groups together or led to their disintegration
were now adapted to focus on the forces that
led to consistency between attitudes and
behavior, or between expression and emotion.

One of the social psychologists who influ-
enced this transition was Harold Kelley. He is
well known for his contributions to attribution
theory, a defining approach to individual social
cognition. He also codeveloped an influential
and important theory of social interaction
called Interdependence Theory. One of the rea-
sons that attribution theory has sparked much
more empirical research than interdependence
theory is that the study of interdependence can-
not be done within the confines of the statisti-
cal independence assumption. (A second
reason is that some types of interdependence,
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such as that which might develop in an
intimate romantic relationship, are difficult to
study within the confines of the 30-minute lab-
oratory experiment.) Remarkably, it is only
within the last 10 years that a sizable number
of social psychologists have returned to look-
ing at groups as molecules, as entities that are
more than a collection of individual atoms.
The good news is that this is happening at all.
The bad news is that the same statistical limi-
tations that shackled the original group
dynamics movement, in particular the statisti-
cal independence assumption, are still limiting
the conceptualization, design, and analysis of
dyads and groups.

In this chapter, we discuss techniques that
will help social psychologists move beyond the
statistical independence assumption in dyadic
and group research designs. We first discuss
the common error of creating independence
within an intrinsically non-independent data
set. Then we consider three analytic models
for “breaking apart” individual and group
levels of analysis while preserving the basic
structure of non-independence. Throughout,
the lesson is that an analytic or statistical strat-
egy should reflect theoretical assumptions
about the mechanism or model of non-
independence. There is no single way to
analyze data from dyads or groups. As is
always the case, the “right way” to analyze
one’s data depends on the research question
one is asking. The main lesson we hope to
convey to the reader is that the researcher
must first be mindful of the type of research
question being asked because the nature of
the research question leads one to different
analytic approaches.

NON-INDEPENDENCE
AND INTERDEPENDENCE

The independence assumption generally
comes in the form of a linear model such as
Yij = µ + αi + εi j where Yij is the jth dependent

variable in the ith condition. This is the
standard model for a one-way analysis of
variance. The variable Y is what is observed.
In an experiment, the αi reflects the shared
effect of the manipulation on every member
of a given cell or condition. The term µ is the
grand mean of the dependent variable, which
is a scaling constant that applies to all obser-
vations in the study. The εi j reflects the set of
unique influences on an individual that are
unshared with the other members in that cell
or condition. This “unshared” effect is at the
heart of the independence assumption
because it is assumed that each of the errors
εi j is independent from the others.

To appreciate how a violation of indepen-
dence might occur, consider a somewhat
contrived example. If three members of one
condition are surveyed on a sunny day
whereas all others are surveyed on a rainy
day (weather is unrelated to the experimental
manipulation), a possibility of “shared
error” is created that would violate the inde-
pendence assumption. The violation of inde-
pendence would make the statistical model
written above inappropriate because the
resulting p value would be incorrect. This is
because the three individuals might respond
similarly to each other due to their shared
sunny environment (even though they expe-
rienced it at different times), and not simply
because of their shared experimental condi-
tion. This violation of independence can be
modeled as a correlation between the error
terms, so that the error terms would now
have a systematic component caused by a
shared influence as well as a random unique
component. (See Kenny and Judd [1986] for
a complete treatment of the effects of a vio-
lation of the independence assumption.)

In a non-experimental observational
study, the Y represents the observed variable,
the µ reflects the grand mean of the observed
variable, the αi reflects the shared effect of
some fixed value of the predictor variable
(say, an individual’s rating of political
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conservatism) on the observed variable, and
the εi j again reflects the set of unique
unshared influences on an individual. For
example, some respondents might be sam-
pled during the summer and others during
the winter, and people’s expressed attitudes
might vary across the seasons even though
their true level of political conservatism does
not. Such shared errors violate the traditional
regression model just as much as they violate
the traditional analysis of variance model
closely associated with experiments. As with
the case of experiments, such violations of
independence could be modeled by allowing
for correlated errors.

Non-independence is simply a statistical
issue that invokes no assumptions about the
cause of the relationship: Are sets of scores
correlated beyond the shared effect of being
in the same experimental condition or having
the same fixed quantity of an explanatory
variable? That is, are there subsets of similar
scores within an experimental condition or
within a level of a predictor variable? The
correlation may come about because of third
variables (such as the weather or time of year)
or from social interaction (perhaps the devel-
opment of shared norms) or “contagion”
between the participants (in the extreme,
a “group mind” as postulated by Le Bon,
1897/2001). Typically, in experiments or sur-
veys, non-independence is a nuisance, and we
correct for it by adding a new factor or pre-
dictor variable to account for shared effects of
weather or season or gender of the inter-
viewer; this in effect shifts the shared effect
from error (where it is a problem) to the fixed
structural model, where it belongs (at least in
traditional designs). A violation of indepen-
dence can seriously influence the conclusions
from a statistical test in that the p value can
be seriously distorted (Kenny & Judd, 1986).

In dyadic and group designs, the “non-
independence in the errors” is due to group
membership. Two members of the same
couple or group are correlated by virtue of the

experience of being in the same group. Group
membership will create correlated errors in
much the same way that we discussed above.
However, there is a major difference in con-
notation that we want to highlight. Usually,
the violation of independence is a nuisance
that the investigator wants to correct or avoid.
However, in the case of dyads and groups, the
violation of independence may be the very
phenomenon the social psychologist is trying
to assess: Are the scores of people within the
same dyad or group similar to each other—
that is, does the group display a shared culture
or outlook or even a personality? To convey
this subtle difference, we use the term interde-
pendence (rather than non-independence, or
violation of independence) to refer to corre-
lated error due to social interaction. The
underlying statistical model, however, is
the same. The key difference in how we
handle interdependence as compared to non-
independence is that we will use the nature of
the correlated error to test hypotheses specific
to the underlying social dynamics (rather than
try to “correct” for the correlated error, as is
usually done in the case of non-independence).

To be explicit, we again write the linear
model and show how it describes interdepen-
dence. In symbols, we have Yij = µ + αi + εi j,
where µ reflects the grand mean of the depen-
dent variable and αi represents the effect of a
manipulated variable such as exposing cou-
ples to one of two experimental treatments
(or the different values of a predictor vari-
able). In much the same way that subjects
measured on sunny days versus rainy days
can lead to correlated error, group member-
ship can lead to correlated errors εi j for indi-
viduals in the same group. Thus, the group
can be conceptualized as a confounding vari-
able. Data from two individuals who are mar-
ried might be related to each other because
the two individuals are married, in addition
to being related to each other because the two
individuals were exposed to the same experi-
mental treatment (or have similar values on a
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predictor variable). However, if we are
interested in the psychology of social interac-
tion, we do not necessarily want to discard
completely (i.e., partial out or correct for) the
correlated error structure. As we show below,
interesting insight about underlying process
can be gleaned by modeling the correlation
between the errors. That is, the interdepen-
dence of the error terms can tell us quite a bit
about the social psychology of interaction
among dyad and group members.

THE INTRACLASS CORRELATION

The magnitude of the interdependence pre-
sent in a variable is indexed by the intraclass
correlation (ICC, often denoted rxx). As we
will soon see, the ICC is the basic building
block of dyadic and group designs. The ICC,
which comes in many forms and has several
uses (Shrout & Fleiss, 1979), indexes the sim-
ilarity of scores on the variable in terms of the
proportion of shared variance within clusters
to the overall variation across all scores. The
ICC can be viewed as an index of agreement
within or across judges, a building block of
Cronbach’s alpha indexing the reliability of a
multi-item scale, or a measure of effect size
for ANOVA models (Haggard, 1958).

In the case of dyadic and group designs,
the ICC has a specific meaning because it
assesses the degree of agreement within group
members. For example, if husbands and
wives rate their feeling of security in their
relationship (that is, the husband and the wife
each rate their own level of security), the data
come naturally in pairs due to marriage. This
pairing, or clustering, could produce a corre-
lation within the cluster that may differ from
the correlation between two individuals who
are not married. The ICC provides an index
of this correlation. The standard indepen-
dence assumption is that all observations are
independent from each other. The ICC pro-
vides a measure of agreement within couple

members, so it provides a natural measure of
interdependence. The ICC would be a rele-
vant measure if a researcher was interested in
testing whether there was agreement between
the husband and the wife on their ratings of
security in the relationship.

We now consider some special cases of the
ICC. If each wife provides a rating that is
equal to her husband’s, but the ratings differ
between couples, then the ICC will be 1
because couples are maximally similar (i.e., all
the variance is between couples). If ratings
vary within couples just as much as they vary
between couples, then the ICC will equal 0
because there is no evidence of similarity or
dissimilarity within couples. If ratings vary
more within couples than they do between
couples, the ICC will be negative, indicating
that individuals within groups are more dis-
similar than expected by chance. Notice the
analogy to the traditional F test used in the
ANOVA model: When variance is primarily
between conditions, the F ratio is larger than
1; when variance is primarily within condi-
tions, the F ratio is smaller than 1. The devel-
opment of the ANOVA model by R. A. Fisher
at the beginning of the 20th century was in
fact a modification of the basic intraclass
correlation then in use (Haggard, 1958). The
ANOVA approach can be restated in terms of
the ICC, but because of its traditional associa-
tion with experimental methods (particularly
factorial experimental methods), the ANOVA
approach has become almost synonymous
with the independence assumption. Repeated
measures, or within-subject, ANOVAs allow
a restricted pattern of correlated errors across
people or across time, and multivariate
(M)ANOVAs allow unrestricted correlations
across outcome variables. Thus, specific gen-
eralizations of the independence condition are
in common use (e.g., a paired t test allows cor-
related error across the two observations from
the same person). The task of the social psy-
chologist studying interdependence is to make
use of such generalizations in order to answer
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specific psychological questions (e.g., what is
the level of husband/wife agreement?).

The ICC can be used to index non-
independence or interdependence across a
wide range of applications, from diary studies
in which individuals are measured a number
of times (time is embedded within individuals,
and an individual’s scores may be similar
across those times) to educational studies in
which students within classes share a common
environment (students are nested within
schools, and the students within a school may
be similar) to studies of close relationships
in which individuals mutually influence each
other. In each of these designs and many
others, the presence of non-independence or
interdependence provides a challenge and an
opportunity. The challenge is to deal with the
level-of-analysis problem (e.g., individuals
versus classes versus schools), both statistically
and conceptually. The opportunity is to go
beyond merely acknowledging the degree of
non-independence and unpack the meaning of
the shared effects. For example, interdepen-
dence means that interacting individuals influ-
ence each other’s outcomes. If a researcher is
examining the impact of social interaction,
then the degree of interdependence might be
the central measure of interest and should be
modeled directly rather than treated as a
statistical nuisance that needs to be corrected.
Such theoretical presumptions guide the way
that data must be structured and analyzed.

Throughout the rest of this chapter, we
focus on examples of one particular class of
designs, observational studies of dyadic inter-
action, and systematically develop models for
conceptualizing different types of dyadic pro-
cesses. Our modest goal is to end the hege-
mony of the independence assumption and its
atomic perspective and to celebrate the return
of the molecular model to social psychology.
We hope to provide an intuitive understanding
of diverse dyadic models by graphical demon-
strations. All the conceptual principles that are
presented apply to experimental designs as

well, but we expect that the most common
application will be to observational designs.
We describe three prototypical designs for
modeling dyad-level data: the latent dyadic
model, the actor-partner model, and the
slopes-as-outcomes (HLM) model. Although
each model is built upon a common building
block (the intraclass correlation), each solves
the levels-of-analysis or multilevel problem in a
different way, with very different implications
for theory building and theory testing.

The latent dyadic model places the main
causal forces giving rise to shared behavior or
attitudes at the level of latent or underlying
dyadic effects. An example of a research ques-
tion that can be tackled by the latent dyadic
model is “What is the dyadic-level correlation
between a couple’s rating of security in the
relationship and a couple’s level of inti-
macy?” The actor-partner model places the
main causal forces giving rise to individual
behavior as acting between individuals. An
example of a research question that can be
addressed by the actor-partner model is
“Which is a stronger predictor of the
husband’s rating of intimacy—his rating of
security or his wife’s rating of security?”
These two models require the same type of
data to be collected: Ratings on each variable
are collected from each member of the cou-
ple. The slopes-as-outcome model emphasizes
causal forces acting between levels, and for
dyads this model requires a more complicated
data collection where data from each member
of the couple are collected over multiple times
(as in a diary study). An example of a
research question that can be tackled by the
slopes-as-outcome model is “Does the level of
security as rated by the couple members mod-
erate how conflict in the relationship today
predicts an individual’s feeling of intimacy
with the partner on the next day?” Note how
these three models are not simply different
statistical frameworks that are available for
the data analyst; they imply different underly-
ing causal structures and thus permit different
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conclusions to be made from one’s data.
(Note, however, that the plausibility of these
conclusions depends on the plausibility of the
assumed causal structure.)

Before we turn to our three focal models,
we mention a hybrid model that combines a
classic experimental approach with actual
social interaction. Kenny’s Social Relations
Model (Kenny & La Voie, 1984) brings the
logic of factorial composition to interper-
sonal interaction by systematically pairing
different interaction partners (a “round
robin design”) and measuring the outcome.
This approach, which can be seen as a rare
marriage of social and personality psychol-
ogy, is not reviewed below because it solves
the non-independence problem by design
(the experimenter’s control over the sequence
of interaction partners) rather than by analy-
sis, per se. In fact, in a full round robin or
factorial design, the experimenter can reduce
the ICC to zero. Our interest in this chapter
is in focusing on the special case where group
membership comes “as is” (e.g., a husband
and a wife, and one generally cannot pair
each husband with all wives!).

The application to experiments involving
dyadic interaction is similar to the observa-
tional case. Indeed, if husband and wives are
brought into the lab and placed into experi-
mental conditions, the analytical options
remain the same as with observational studies.
An experimental setting may introduce new
types of designs (such as a female confederate
who interacts with all participants in the
study), and these design changes do have impli-
cations for data analysis. For instance, even
though the experiment might involve dyadic
interaction between the confederate and each
participant, the confederate usually does not
provide data (usually only the participant in
the dyad is the subject of the study and pro-
vides data). In such cases interdependence,
while it may be occurring between the confed-
erate and the research participant, would not
be present in the data. Once again, the devil is

in the details, and different experimental
designs may call for variations in how to
handle dyadic or group interdependence.

GRAPHICAL REPRESENTATION OF
THE INTRACLASS CORRELATION

The intraclass correlation is one of the oldest,
as well as one of the most versatile, statistics.
The original computation method for the intr-
aclass correlation proposed by Karl Pearson
(1901) was quite intuitive. He focused on the
similarity of all possible pairwise combina-
tions of the members from within the same
group. Imagine that the researcher is studying
roommates who live in three-bedroom apart-
ments, so there are three individuals living in
each apartment. Each roommate provides a
rating of satisfaction with the living situation.
The following comparisons are possible for
each score: Roommate 1 is compared to
Roommate 2, Roommate 1 is compared to
Roommate 3, and Roommate 2 is compared
to Roommate 3. Originally, this pairwise
intraclass correlation was computed using a
special way of coding data, which we describe
below. Although other methods of computa-
tion have been developed, the method we pre-
sent is identical to the maximum likelihood
estimate of the ICC seen in hierarchical linear
modeling programs (when groups have equal
size). This equivalence is nice because the rela-
tively simple pairwise approach helps illus-
trate the more complicated maximum
likelihood estimate that is generated from
statistics packages, which may not be easy to
understand.

Consider a simple example of five male
homosexual couples where each member of
the couple provides a rating of his own level
of intimacy in the relationship. Let’s say that
the scores on this dependent variable were
(1, 2), (3, 4), (4, 4), (5, 4), and (2, 3). The two
members of a given couple are denoted
within a set of parentheses. We could enter
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these 10 data points in one long column—1,
2, 3, 4, 4, 4, 5, 4, 2, 3—along with an asso-
ciated column of codes that tell us of which
dyad the individual was a member. The pair-
wise approach involves re-entering the same
data but in a different order, an order that
switches the two individuals within the same
dyad. So, for these data the second column
would be 2, 1, 4, 3, 4, 4, 4, 5, 3, and 2. To
understand how this coding works, it is help-
ful to plot these data, calling the first column
X and the second column of reordered data
X́  (see Figure 14.1).

This plot appears to show a positive corre-
lation between the two columns, but actually
it shows more. If we connect the two points
of the same dyad with a line segment, we see
some structure around the identity line. It is

this very structure that is the violation of the
independence assumption and provides infor-
mation about the degree of interdependence.
These data are not randomly scattered on the
plane; instead, points are joined as pairs
according to dyadic structure—group mem-
bership defines an association between pairs
of points. Figure 14.2 shows the same points
displayed with the additional structure.

Figure 14.2 shows that the two members
of each dyad tended to agree, and as the data
show, the members in four of the five couples
differed by one point on this scale. Thus,
pairs within dyads tend to be similar, but
there is quite a bit of variation across dyads,
as indicated by the line segments intersecting
the identity line at different places. Perfect
agreement corresponds to a point on the
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identity line, as seen in the couple that had
the score (4, 4). It turns out that the tradi-
tional Pearson correlation between these two
variables (i.e., variables that have been “pair-
wise” or double coded) provides the pairwise
ICC, which is the maximum likelihood esti-
mator. In this example, the intraclass corre-
lation is relatively high at 0.706, suggesting a
high level of within-dyad agreement.

A different example shows what the plot
would look like when there is little similarity
within dyads. Consider the data (1, 5), (2, 5),
(3, 1), (4, 1), and (5, 3). Again, string these
data into one long column, X, create a second
column that contains the recoded pairwise
data X́ , examine the plot, and compute
the Pearson correlation between the two
columns X and X́ . As one would expect with

these data, Figure 14.3 reveals relatively little
agreement within dyads; instead, there is a
type of dissimilarity such that when one
member of the couple scored relatively high
(i.e., above the mean), the other member
scored relatively low, indicating some sort of
complementarity within the couple. Indeed,
the plot shows that the pairs of points are not
close to the identity line (which would have
signified agreement); the Pearson correlation
between X and X́ is –0.615.

These plotted examples used data for
which dyad members are indistinguishable,
or exchangeable, in the sense that we have no
theoretical reason to distinguish one person
from another. Other examples of exchange-
able dyads are same-sex twins, members of a
work group, and members of a jury (except
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for possibly the foreperson). A reader may
think of ways of making the individuals dis-
tinguishable, such as coding the older same-
sex twin, or the seniority of each member of
the work group, or the chair each juror took
at the deliberation table. Although each of
these additional variables provides a means
in principle for distinguishing the members
of a group, our use of the term “exchange-
able” refers more to the underlying theoreti-
cal variable of interest.

A more familiar type of dyad is where
members are distinguishable by some theo-
retically meaningful variable; examples
include heterosexual couples where sex is the
distinguishing variable, a landlord/tenant
pair, and a medical team of a doctor and an
aide. Distinguishable dyads have the key
characteristic that it is appropriate to place
data from all members of one “type” under

one column in the data file and members of
the other type in a second column, and
compute a regular Pearson correlation. In
exchangeable dyads, this is not possible
because it is not clear “who should be in
Column 1 and who should be in Column 2.”
The pairwise ICC in the distinguishable case
provides different information from the
regular Pearson coefficient because the ICC
indexes absolute rather than relative similar-
ity. The computation involves a slight modi-
fication to the procedure used in the
exchangeable case. Rather than taking the
Pearson correlation between X and X́ as in
the exchangeable case to compute the pair-
wise ICC, one computes a partial correlation
between X and X́ controlling for the distin-
guishing variable (e.g., including a single
dummy code for gender). (See Gonzalez and
Griffin [1999] for details.)

DESIGN AND ANALYSIS322

0 1 2 3 4 5 6

0
1

2
3

4
5

6

X
'

Figure 14.3 A Second Example of the Pairwise Coding Illustrating Little Within-Couple
Agreement

14-Sansone.qxd  6/14/03 11:47 AM  Page 322



The data coding for the pairwise approach
can be extended to groups of larger size, but
it becomes somewhat tedious because the
coding must include all possible pairs of
group members. For example, if Amos, Bram,
and Carl (A, B, C) make up a triad, column X
would need six rows to do the pairwise cod-
ing: using first letters of their names, we
would enter data from A, A, B, B, C, C. In
column X́ we place the pairwise coding
where each partner is listed adjacent to each
member (but excluding self pairings). Thus,
column X́ would be B, C, A, C, A, B, which
lines up against column X to include all pos-
sible pairwise codes; in this case and any time
there are equal numbers within each group,
the Pearson correlation of columns X and X́
provides the maximum likelihood estimator
of the ICC (the same estimate of the ICC that
would result from a hierarchical linear mod-
eling program using maximum likelihood).
Elsewhere we discuss simple computational
formulae for the pairwise ICC in groups and
explain the difference between the pairwise
ICC and the ANOVA-based ICC (Gonzalez
& Griffin, 2001). Throughout the remainder
of this chapter, we focus on dyads because
our goal is to convey the basic ideas.
Although the basic ideas scale naturally from
dyads to larger groups, readers interested in
groups larger than dyads should consult our
other papers for specific details (e.g.,
Gonzalez & Griffin, 2001).

INDIVIDUAL AND GROUP
EFFECTS: ONE IS NOT ENOUGH

We now move to the case of two variables,
say level of intimacy and degree of commit-
ment to the relationship. Research questions
in social psychological research usually
involve multiple variables, so we need to
extend the measure of interdependence pre-
sented above to handle more than one depen-
dent variable. We present an example to

show why it is useful, even necessary, to
consider effects both at the level of the indi-
vidual and at the level of the group. That is,
we can ask whether two variables are related
at the dyadic level and also whether the same
two variables are related at the individual
level. Does a couple’s joint level of commit-
ment correlate with the couple’s joint
intimacy rating? Does the wife’s rating of
commitment correlate with her intimacy rat-
ing, and does that correlation differ from the
husband’s correlation between the same two
variables? Asking research questions at multi-
ple levels (dyadic and individual) creates
opportunities for new theory testing. We now
illustrate this distinction with some examples.

Let’s make up a simple example with five
homosexual couples (i.e., five exchangeable
dyads). The scores for the five dyads on level
of intimacy are as before, with the example
showing high agreement: (1, 2), (3, 4), (4, 4),
(5, 4), and (2, 3). The scores for degree of
commitment also show high agreement (pair-
wise ICC = .834): (5, 5), (2, 1), (3, 3), (3, 2),
and (4, 5). Let’s call these two variables X and
Y, respectively, and we will also create the
pairwise coded version of these variables X́
and Y´. The two pairwise plots for level of inti-
macy and degree of commitment are pre-
sented in Figure 14.4. Next to each line
segment depicting a dyad, we place a number
corresponding to which dyad it is; for
example, on intimacy the point (3, 3) corre-
sponds to Dyad 3 in our hypothetical data set.

Although both plots show a relatively high
level of dyad-agreement (positive correlation
within variables—meaning the lines perpen-
dicular to the identity line are relatively
“short” compared to the variation along the
identity line), it is instructive to compare the
dyad numbers listed in the intimacy plot with
the dyad numbers listed in the commitment
plot. At a higher level of analysis, there
appears to be a negative correlation between
the placement of these dyad numbers across
variables: When both dyad members are low
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on intimacy, such as Dyad 1, both dyad
members tend to be high on commitment.

How can we capture this dyad-level rela-
tionship between joint standing on one vari-
able and joint standing on a second variable?
We need what is called the dyad-level corre-
lation, which is obtained in two steps: calcu-
lating the cross-partner, cross-variable
correlation and then correcting this correla-
tion by the degree of within-dyad similarity
on each variable. The cross-partner, cross-
variable correlation can be visualized using a
variation of the pairwise ICC plot where we
place each individual’s intimacy score on one
axis and the partner’s commitment score on
the other axis, as shown in Figure 14.5. In
other words, it is a cross-variable pairwise
intraclass correlation.

The Pearson correlation between an indi-
vidual’s intimacy and the partner’s commit-
ment is –.656, which captures in a raw-score
sense the negative relationship between the
relative ordering of dyads on the intimacy
pairwise ICC and the commitment pairwise
ICC plots we showed earlier. The negative
correlation can be seen by looking at the

10 points in the plot (ignoring the line
segments connecting dyad members). These
10 points show a negative correlation between
an individual’s intimacy and the partner’s
commitment. To see the negative correlation,
note that the scatterplot of points moves from
the northwest corner to the southeast corner
of the scatterplot. The line segments provide
further information because they identify the
pairs of points that belong to the same dyad—
again giving a visual measure of the within-
dyad similarity on each variable.

The key conclusions from this plot are (a)
that when individual-level relations are
stripped out of the data (by examining across-
partner relations) there is a strong negative
correlation, and (b) the dyads appear to be
similar on both intimacy and commitment.

These two conclusions are jointly modeled
in the dyad-level correlation that captures the
relation between the two variables at the
level of dyadic latent variables. To move to
the latent or true-score level, the correlation
between X and Y´ is adjusted by a denomi-
nator that is made up of the product of the
ICCs of each; this dyad-level correlation
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measures whether the type of dyadic similarity
on one variable—for example, when both
members of a given couple are high—relates
to the type of dyadic similarity on the
other—for example, when both members are
low (see Griffin & Gonzalez, 1995, and
Gonzalez & Griffin, 2002, for details). Such
a latent variable correlation also can be inter-
preted as the correlation between the “true”
dyad-level scores on each variable—scores
that have been purged of the unique individ-
ual-level effect of each dyad member.

This is one possible solution to the levels-
of-analysis problem: Shared variance within
a dyad is treated as a dyadic effect and
related to create a dyadic-level correlation or
regression; unshared variance is treated as an

individual effect and related to create an
individual-level correlation or regression (as
we describe below). Note, however, that
such a model is first and foremost a theoreti-
cal choice that implies that there is some
underlying and unobserved group-level con-
struct (dyadic personality? shared environ-
ment? group mind?) that gives rise to the
observed similarity. This is an important
point because it shows how the choice of
one’s statistical model reflects one’s underly-
ing theoretical model. Practically, this theo-
retical choice translates into a requirement
that the ICC for each variable must be high,
or at least marginally significant (Kenny &
La Voie, 1985), which signals the presence of
shared within-group variance.
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This formulation extends the simple case
of the ICC on one variable to cases with two
or more dependent variables. There are four
key correlations in the two variable case: the
ICC for variable X, the ICC for variable Y,
the dyad-level correlation described above,
and an individual-level (within-dyad) corre-
lation. To make a connection with the simple
ICC on one dependent variable that we pre-
sented earlier, we now consider two linear
equations, one for each variable, and show
how to depict the four relevant correlations.

The first equation yields the ICC for vari-
able X, and the second equation the ICC for
variable Y, as we saw before in the single-
variable case. The αi s are random-effect
terms that index dyad membership, and the
µ s reflect the grand means of each of the two
variables. The additions in the two-variable
case are the two vertical arrows that connect
terms across the two equations. The arrow
labeled rd depicts the dyad-level correlation,
which is a correlation between the group level
effects αi; the arrow labeled ri depicts the indi-
vidual-level correlation, which is a correlation
between the ε s. An intuition for the two cor-
relations is that each represents a “unique”
relation controlling for the other. In other
words, the dyad-level correlation controls for
the individual effect, and the individual-level
correlation controls for the dyad-level effect
(see Kenny & La Voie, 1985). For details of
how to estimate this model using the pairwise
approach, see Griffin and Gonzalez (1995).
In the distinguishable case, this latent variable
model can be implemented using standard
structural equation modeling (SEM) pro-
grams (Gonzalez & Griffin, 1999).

Although this is not a standard HLM
model (discussed below), even with exchange-
able dyads the model can be instantiated in
HLM as a special case of multivariate
outcomes, where both variables X and Y are
treated as outcome variables. For details on
how to implement this model in the context of
an HLM program, see Gonzalez and Griffin
(2002). Under maximum likelihood estima-
tion and when all the groups have the same
number of members, the parameters estimated
in HLM are identical to the parameters esti-
mated with the pairwise approach (e.g.,
Griffin & Gonzalez, 1995). The individual-
level correlation is also identical to the “aver-
age within-dyad” partial correlation one
would estimate if dyad was entered as a
grouping or dummy code (i.e., controlling for
the variability of group means), a procedure
that can be implemented easily in multiple
regression (Cohen & Cohen, 1983). However,
a complete analysis of one’s dyadic data
should do more than examine the individual-
level variance. As we have been arguing in this
chapter, there is useful psychological informa-
tion in the group-level variances and covari-
ances. The latent variable model permits a
decomposition of individual- and group-level
effects so that both types of effects may be
examined simultaneously.

The Use of Dyad Means as
Indicators of Shared Variance

The reader may ask, “Why not use the
dyad mean as an index of ‘dyad-level score’
and then correlate the dyad means? What is
the value added in running this complicated
latent variable model? Is it not the case that
if we compute the dyad means for intimacy
and the dyad means for commitment, and
then correlate the two sets of means, that we
can get an estimate of the group level corre-
lation?” Indeed, in the hypothetical example
presented earlier, we observed a value of –.80

Xij = µx + α i + ε ij

rd
⇔ri

Yij = µ y + αi + ε ij
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as the correlation between the two sets of
group means, which at least in terms of sign
is consistent with the information from the
graphical representation we presented.

However, there is a major problem with
using dyad means as a measure of dyadic effect
because the mean aggregates across both
individual-level and dyad-level processes. The
correlation between dyad means consists of
multiple components, and some of these com-
ponents do not reflect dyad-level processes. It
is possible that the correlation between the
dyad means could be negative even when the
actual dyad-level correlation is positive.
Indeed, there are many possible ways in which
the correlation of dyad means can be mislead-
ing (see Griffin & Gonzalez, 1995). Thus, a
correlation between dyad means cannot be
interpreted meaningfully in the context of this
model except as an “aggregate,” or combina-
tion, of both dyadic and individual effects.

The plots presented above show why it is
inappropriate to discard one of the dyad
members, which is a common simplifying
strategy among some data analysts who study
dyads. There is information in the degree of
similarity or shared variance within a dyad
that is conceptually meaningful. To discard
such information is to ignore potentially inter-
esting findings about social behavior. Most
important, examining individuals “outside the
group context” provides little information
about what part of the apparently “individual”
behavior is shared and what is unique.

INFLUENCE AND INTERACTION:
A MODEL OF INTERDEPENDENCE

The latent variable model of dyadic influence
implies that dyadic influence flows from a
shared dyadic construct to each individual’s
behavior. However, the same data can be
analyzed under the assumptions that the
influence flows from individual to individual

(without latent variable constructs), and that
an individual’s outcome is created by his or
her own qualities (the “actor effect”) plus
the qualities of the partner (the “partner
effect”). (See Figure 14.6 for a graphical
depiction.) Although the parameters of the
“actor-partner” model are in fact algebraic
transformations of those given by the latent
variable model, the focus and interpretation
of the parameters are quite different, with the
actor-partner model fitting Kelley’s interde-
pendence model where all forces are between
individuals. In the actor-partner model, there
is no underlying dyadic effect giving rise to
observed similarity; similarity on X is simply
unexplained (i.e., correlated predictor vari-
ables), whereas similarity on Y is generated
by the actor and partner predictor variables
plus correlated (unexplained) residuals. Note
that the actor-partner model does not
directly model group processes in terms of
relationship parameters that are related to
similarity (as does the latent variable model
presented earlier). Instead, the actor-partner
model merely “corrects” for the fact that
individuals are nested within dyads or
groups, and it models relationship parame-
ters in terms of regression coefficients that
can be interpreted in terms of an actor’s
influence on the self and the partner’s influ-
ence on the self.

How should one choose between the actor-
partner model or the latent variable model?
Because the two models are transformations
of each other (i.e., identical goodness-of-fit
estimates, and the parameters of one model
can be mapped one-to-one to parameters in
the other model when certain equality con-
straints are placed on parameters), the choice
is not a statistical one. Rather, the choice
should be based on what the investigator
wants to highlight in the data. If the investiga-
tor wishes to highlight how similarity within
group on one variable correlates or predicts
similarity within group on another variable,
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then the latent variable model would be
appropriate. If the investigator wishes to high-
light how predictors measured on the self and
other relate to outcomes for the self and other,
then the actor-partner model would be appro-
priate because it corrects for interdependence.

When the members of couples or dyads are
distinguishable (e.g., mixed-sex romantic
couples), it is straightforward to estimate the
models implied by the actor-partner model
using structural equation modeling (Gonzalez
& Griffin, 1999). One benefit of using a
structural equations modeling approach is
that the software allows for straightforward
testing of equality constraints (e.g., one can
test whether the wife’s influence on the
husband is different from the husband’s 
influence on the wife). However, when the
members are exchangeable, standard

methods are inappropriate, and even hierar-
chical linear modeling programs take some
coaxing to fit the model (Campbell &
Kashy, 2002). In the exchangeable case, the
pairwise coding approach we introduced
above provides appropriate maximum likeli-
hood estimates of the actor, partner, and
interaction parameters when the pairwise
columns are analyzed with standard multi-
ple regression programs. However, special
standard errors must be used to test the
parameters because of the presence of inter-
dependence (Gonzalez & Griffin, 2001). In
particular, the special standard errors adjust
for the non-independence on both X and Y;
when the intraclass correlations on X and Y
are 0, then the tests automatically simplify to
usual standard errors for the regression
model.

DESIGN AND ANALYSIS328

Husband's
X

Husband's
Y

Wife's
X

Wife's
Y

a

c

b

d

error

error

Figure 14.6 The Actor-Partner Model

14-Sansone.qxd  6/14/03 11:47 AM  Page 328



Thibaut and Kelly (1959) presented a
specific theoretical model of interdepen-
dence involving three components: how an
actor influences his or her own behavior,
how the partner influences the actor’s
behavior, and how the actions of the pair as
a joint entity influence the actor’s behavior.
This theoretical framework can be trans-
lated into a more general actor-partner
model that includes an interaction term as
well as the two main effects (one for actor
and one for partner). This more general
actor-partner model presents a point of
departure from the latent variable model
because, with the inclusion of the interaction
term, the two models are no longer statisti-
cally indistinguishable. The details of this
more general model still need to be devel-
oped, with statistical testing procedures
requiring proof and simulation. Kenny
(1996) provided some initial proposals on
how to operationalize the interaction term.
These advances provide an interesting
example of how developments in statistical
theory are being motivated by particular the-
oretical problems in social psychology.

HIERARCHICAL LINEAR
MODELING: SAME OLD
STORY OR A NEW PERSPECTIVE?

Most readers will be aware that there is a
new “toolbox” for thinking about nested or
multilevel data that has been developed in
educational studies. Research on classroom
performance led to emergence of a new stan-
dard approach, used when individuals are
nested within dyads, or pupils are nested
within classrooms, or workers are nested
within organizations. These new programs
(including HLM for Hierarchical Linear
Models and MLNwin for Multi-Level mod-
els) automatically adjust in their own way
for the levels of analysis displayed in the

plots we presented above. The standard
hierarchical linear models invoke theoretical
assumptions about how to divide up and use
within-group shared variance. The key
assumption is that interdependence within
groups, or individuals across time, can be
captured in a within-unit regression model
described by an intercept (representing the
elevation of the set of outcomes points) and
a set of slopes (representing the relation
between predictors and the outcomes). These
within-unit intercepts and slopes are then
described in terms of a “fixed” component
that is common to all units and a “random”
component that consists of the variability
among the units. A significant random com-
ponent of a slope or intercept means that
there is meaningful systematic variation
between the units on that parameter. When
significant “random” variation exists among
the within-unit parameter values, the analyst
searches for “cross-level interactions”:
higher-level factors (e.g., the average SES of
the school) that predict variations in the
within-unit parameter of interest (e.g., the
relation between incoming GPA and gradu-
ation test scores).

Consider a multilevel analysis carried out
by Murray, Bellavia, Rose, and Griffin
(2003) examining how individuals (nested in
married couples) responded to daily conflicts
with their partners. The authors hypothe-
sized that conflicts on a given day could give
rise to individuals feeling more or less inti-
mate with their partners the next day, and
the direction and magnitude of this cross-day
relationship would be moderated by the indi-
vidual’s level of felt security in the relation-
ship. Each individual within each couple
filled out a set of daily diaries for 21 days.
Clearly, a number of different sources of
non-independence exist in these data. First,
there are multiple observations across time
from each individual (generally, we will treat
this within-individual level as “Level 1” and
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model the slopes and intercepts from this
level in terms of predictors from higher lev-
els, e.g., from the individual or couple level).
Second, at each point there are observations
from matched husbands and wives that may
or may not correspond or be similar. Third,
the slopes and intercepts that are computed
within each individual at Level 1 may be
similar within couples. In a typical slopes-
as-outcomes model with dyadic data, the
first and third types of non-independence are
modeled and the second is not.

To illustrate the slopes-as-outcomes
approach, data from five dyads are plotted in
Figure 14.7. Each dotted line represents a
best-fitting line for the 20 daily points where
today’s feeling of intimacy is predicted by the
amount of conflict experienced yesterday.
The X variable (amount of conflict yesterday)
has been centered so that the 0 point corre-
sponds to the mean level for that individual.
In such a transformed model, the Level 1
or within-individual across-time intercept
reflects how intimate one partner feels the day
after an average amount of conflict. The

Level 1 slope reflects reactivity: how much
one’s level of intimacy today depends on
the amount of conflict experienced yesterday.
The solid line refers to the best-fitting line
(defined by slope and intercept) across all
individuals—this is the fixed effect. There is
a small but nonsignificant negative slope
between conflict and intimacy for men and
women. The average level of intimacy, the
elevation of the fixed line, is virtually identi-
cal for men and women. The focus of the
slopes-as-outcomes model, however, is on the
variability of the individual lines around the
fixed line.

Consider the partners from Marriage 2
(the number next to each regression line
refers to couple number). In this small sub-
sample of men and women, they are the only
ones who show a positive slope between yes-
terday’s conflict and today’s feelings of inti-
macy. This illustrates both the covariation
between partners (essentially the ICC
between partner’s Level 1 coefficients) and
the as-yet-unexplained variability of the
slopes and intercepts. This variability is then
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explained in terms of higher-level factors
(e.g., individual- or couple-level factors) that
cause some individuals or couples to be more
reactive than others, or for some to react
positively and others to react negatively. In
accord with Murray et al.’s (2003) hypothe-
sis, individuals with high levels of felt secu-
rity responded to higher levels of conflict
than average by drawing closer to their part-
ners, whereas those with low levels of felt
security responded to higher than average
conflict days by drawing away from their
partners.

In this model, romantic partners are
treated as parallel multivariate measures
so that interdependence is modeled (i.e.,
accounted for in the model) but is not the
focus. The focus, instead, is on explaining or
predicting the Level 1 slopes and intercepts
by higher-level factors. However, the Level 1
slopes can include across-partner (within-
level) interdependence directly at Level 1, for
example, by examining whether a man’s
report of conflict on a given day predicted his
wife’s report of conflict. Both the multivari-
ate outcome model and the cross-partner
analysis just described are limited to cases
where the dyad members are distinguishable.
It is a challenge to extend the same models to
the exchangeable case.

Despite the power and elegance of the
“slopes-as-outcomes” model, it is designed
to answer one particular kind of question:
What group-level factors predict the eleva-
tion and slope of within-group relations? As
such, it does a fine job of identifying the indi-
vidual effect in context. However, this stan-
dard multilevel model does not deal with all
the research questions stated above. Instead,
it focuses primarily on how the pattern of
relations at Level 1 depends on the values of
the higher-level units. Also, the multilevel
framework can get very complicated when
one allows for non-independence due to
time, interdependence within a variable (the

ICC), and interdependence across multiple
dependent variables (such as in the latent
dyadic model). Specific implementation of
HLM models are beyond the scope of this
chapter. We refer the reader to book-length
treatments such as Raudenbush and Byrk
(2002) and Snijders and Boskers (1999),
where details such as centering of variables,
definition of latent variables, and various
implementation details are described. For a
discussion of centering in HLM models, see
Hoffman and Gavin (1998).

MORALS

In most chapters such as this, a major goal is
to highlight a hot new analytic technique
available to the researcher. As such, one
would expect us to showcase HLM as the
new kid on the scene and expect us to con-
vince readers to use it in their analyses.
However, our approach has been to present
HLM as a statistical framework that pro-
vides a direct way to estimate parameters of
interest under a particular model, the slopes-
as-outcomes model. We did not offer HLM
as the “correct” way to analyze one’s data.
We hope that the reader has extracted some
lessons from this chapter beyond the simple
awareness of how to use the hottest new
technique currently available. Our goals
were (a) to show that there are deeper ways
of thinking about the degree of interdepen-
dence among interacting individuals and
(b) to provide some intuitions about how to
think about violations of independence, why
it might present a problem for standard
statistical tests, and why interdependence
provides an opportunity for researchers
interested in studying interacting individuals.
The violation of independence suggests
that interacting individuals are not “iso-
lated.” As such, interdependence is a signal
that the very phenomenon researchers are

Measuring Individuals in a Social Environment 331

14-Sansone.qxd  6/14/03 11:47 AM  Page 331



seeking—people influencing each other—is
present in one’s data.

We presented three different theoretical
models. Each of these models provides a
different way to think about one’s data and
highlights different features. The latent vari-
able model places similarity at the forefront;
it models similarity directly within dyads both
within a variable and across multiple vari-
ables. It answers individual-level questions
such as “What is the correlation between an
individual’s rating of commitment and the
same individual’s rating of intimacy?” as well
as group-level questions such as “Are couples
in which both individuals are high on com-
mitment also the couples in which both
individuals are high on intimacy?” The
actor-partner model places interpersonal
influence at the forefront; it models interde-
pendence across variables and corrects for
interdependence within variables. It answers
questions such as “Which variable is a better
predictor of her intimacy rating: his commit-
ment to the relationship or her commitment
rating?” The slopes-as-outcomes model
places individual processes at the forefront; it
models these processes (often over time) as a
function of other variables (which can be
variables from the individual actor or the
partner, or can be a unit variable such as
number of children). It answers questions
such as “Does the level of commitment each
partner feels moderate how today’s intimacy
in the relationship predicts tomorrow’s level
of intimacy?”

Which model is correct? Which model
should I use on my data? Unfortunately,
these are not questions that can be answered
with simulation or mathematical reasoning.
It turns out that all the models presented here
(as well as others presented by Kenny, 1996)
are in some sense correct. In fact, some sta-
tistical programs can be used to estimate all
three models. For example, an HLM pro-
gram can be used to estimate the latent

variable model (Gonzalez & Griffin, 2002;
Griffin & Gonzalez, 1995). But special tricks
are needed because the latent variable model
is in a sense “multivariate” and HLM pro-
grams are designed primarily for univariate
regressions (that is, the slopes-as-outcomes
framework needs to be “tweaked” to esti-
mate the parameters of the latent variable
model). Another example is that an SEM
program, which is used to estimate the latent
variable model (with dyad and individuals as
latent variables), also can be used to estimate
the regression-based actor-partner model
(Gonzalez & Griffin, 2001).

Our point is that the particular statistical
program one uses is not the real issue,
because with a little bit of work it is possible
to make a program estimate the necessary
parameters. One should not use HLM
merely because it is what other researchers
in one’s area are using. We encourage
researchers to ask themselves the critical
question, “Which model is most appropriate
for the information I want to extract from
my data?” The answer to this question deter-
mines how to proceed with specific analytic
techniques. The different models we pre-
sented have (superficially) different ways of
handling the non-independence that results
from group membership. Which method is
right for you depends mostly on the theoret-
ical question you want to answer.

This answer may not be satisfying to
people who want to know which technique
to use to analyze a data set in front of them.
But we believe that without knowing the
underlying theoretical framework that
motivated the research question, it would be
inappropriate to make a blanket recommen-
dation. Instead, we offered the pairwise
approach as a tutorial method to illustrate
several issues surrounding interdependence
and offered three conceptual frameworks
against which various psychological research
questions can be modeled. As David Kenny
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has said, interdependence is the “very stuff”
of relationships. Once one understands how
to measure interdependence, then there is an
immediate realization that the way to handle
interdependence depends on the underlying

model one has in mind. A general statistical
framework that can be guided by theory and
mold itself to the specific needs of a
researcher is the best analytic tool that any-
one could wish for.
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