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TRANSACTIONS AND STATISTICAL
MODELING: DEVELOPMENTAL
THEORY WAGGING THE
STATISTICAL TAIL

RICHARD GONZALEZ

What new statistical techniques are available for developmental psy-
chology? What hot new technique is available for me to use in my research?
Such questions may appear reasonable, but I believe they place emphasis on
the wrong attributes. I prefer to reframe such questions. What new theoretical
and empirical properties are developmental psychologists testing and measur-
ing? This changes the focus from asking about new statistical techniques to
asking about theory, modeling and testing. It highlights the need to challenge
current methodological assumptions and methods rather than to find ways to
tweak existing methods to fit new empirical and theoretical questions.

In this chapter I focus on the key features of the transactional model.
Some of these features require the development of new methodological tech-
niques that provide appropriate tests. Once the key features of the transac-
tional model are reviewed, I outline several statistical developments that
facilitate the implementation of these features in statistical models. My hope
is that this chapter will inspire developmental psychologists to think more
broadly about the kinds of questions they ask and will inspire methodologists
to think more broadly about the statistical techniques they develop.

[ —
1 thank Arnold Sameroff for his illuminating discussions over several lunches about the transactional model.

223




BACKGROUND

When thinking about the use of a mathematical or statistical model,
one might find it useful to make an analogy to a road map. A road map is help-
ful to the motorist driving between two cities. The map informs the motorist
which streets and highways to take, which is typically the key information
the motorist wants to know. A road map does not include every detail, nor is
it a perfect replica of the original. The map is a simplified representation that
contains only the features necessary for its intended use. The typical road map
by itself would not be useful, for instance, in the study of social networks in g
city. The road map was not designed to offer information about social net-
works, though one can imagine different kinds of maps that could be con-
structed by a researcher studying social networks. A modified road map that
overlays key individuals and their social ties could be useful when the goal is
to understand the location of the critical nodes of a social network in a geo-
graphical layout.

A statistical or mathematical model is analogous to a road map because
it is a simplified, abstracted representation of a more complex phenomenon.
The mathematical model is a useful representation in so far as the abstraction
contains the features that are necessary to understand the phenomenon. Take
the simple general linear model Y = XB + €. This model is a simplification in
the sense that a dependent variable Y is modeled as a linear combination of
predictor variables X (where X is a matrix, including the unit vector that
models the intercept) plus a stochastic term €. One learns in introductory sta-
tistics courses (a) to check the assumptions of this model, (b) how residuals
can diagnose problems with the equality of variance and normality assump-
tions, (c) that measures of influence can be used to check for outliers, and
(d) to deal with curved data by transforming the dependent variable or the
predictor(s) or by including polynomial terms as additional predictors. The
simple general linear model can be extended further into other types of sta-
tistical distributions such as the generalized linear model that encompasses
logistic, probit, Poisson, gamma, and other forms of regression. One learns
(a) to extend the simple linear model into one with random-effects terms and
multilevel equations that permit modeling different trajectories for each indi-
vidual and (b) that the simple linear model can be extended to nonlinear
regression and that it is even possible to mix and match elements from these
various generalizations, such as a multileve] nonlinear regression equation
with a Poisson distribution.

There are trade-offs in any modeling exercise. A model can be made
more complex, and hence more representative, but it comes at the price of
being harder to understand and less parsimonious. As a model is endowed with
more complexity, the better it can fit a particular data set. Although complex-
ity makes a model richer, it also makes it more likely that idiosyncratic fearures
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of the data dominate the fit, thus reducing the generalizability of the statisti-
cal conclusions that emerge from the estimation exercise. Navigating such
rade-offs requires trial and error and a solid appreciation of the intended goals
of the modeling exercise (i.e., the intended use of the road map).

Some people claim that a mathematical model forces one to be precise.
I agree that precision is an important feature of a mathematical model. A
lesser known property of mathematical models is that they allow one to be
more general in the following sense. If 2 mathematical property is shown not
to represent a phenomenon adequately, one also rejects every theory (not just
current theory but theories yet to be developed) that makes use of the math-
ematical property that has been rejected by data. The usual empirical approach
is to test theories one at a time. As new theories emerge, new empirical tests
are needed. Today one testsa competitor theory against the old standard the-
ory. If tomorrow a new theory emerges, one needs a new empirical test for the
new contender. However, by focusing on properties of theories and testing
those properties, one may make more general empirical and theoretical state-
ments that cut across an individual study or test.

A good example of such generality from mathematical modeling occurs
in research on similarity judgment. For a long time, the literature focused on
geometric psychological representations that could account for similarity
judgments. If a child judges two items as similar, those items should be repre-
sented as close in “psychological space.” Two items judged as dissimilar could
be represented as relatively far in psychological space. Through a series of
judgments, researchers hoped to characterize the nature of psychological
space. Such representations could be used, for example, to study the develop-
mental trajectory of knowledge and meaning. Researchers struggled to finda
mathematical representation to account for similarity judgments. Tversky
(1977) showed that similarity judgments do not always obey key properties
that characterize all distance metrics—symmetry and triangle inequality.
Symmetric judgments occur when a child judges the similarity of Object A to
B to be the same as the similarity of Object B to A (order of judgment is irrel-
evant). Triangle inequality can be viewed as a type of geometrical constraint:
If 2 third Object C is “hetween” Objects A and B, then the direct distance
between A and B cannot exceed the sum of the intermediate distances AC
and CB (e.g., the distance between Seattle and Boston cannot be greater than
the sum of the distances of Seattle to Ann Arbor and Ann Arbor to Boston).
If those two properties are violated, the debate about which distance metric
to use is silly because a distance metric for such data cannot exist. 1t would
not be an issue of how well the model fits the data, but the model could be
rejected outright for not satisfying the necessary properties of symmetry and
triangle inequality. Not just existing theories but any theory yet to be devel-
oped that makes use of symmetry or the triangle inequality would be in jeop-
ardy if either of those properties were found not to hold. It is not necessary to
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conduct new empirical studies to test new theories that make use of symme-
try and triangle inequality. Once the empirical boundary conditions of those
conditions are known, then one also knows something about the boundary
conditions of any theory that makes use of those properties. Tversky (1977;
also Tversky & Gati, 1982) provided convincing evidence of violations of
both symmetry and the triangle inequality. This evidence provides one exam-
ple of the benefits of a clear mathematical or statistical model. A good math-
ematical model can be simultaneously more precise and more general than
the standard empirical approach.

There is much benefit from a dual approach that focuses on clear theo-
retical statements of psychological phenomena and the implementation of
those statements in a mathematical or statistical model. In this chapter I
highlight some key properties of the transactional model and discuss possible
implementations of those properties in formal models. My discussion remains
at the general level of process rather than at specific hypotheses about partic-
ular variables.

TRANSACTIONAL MODEL

Given my emphasis on having a clear theoretical statement before purs-
ing statistical details, I need to outline the transactional model. There are sev-
eral published pieces outlining, expanding, and applying the transactional
model, so [ refer the reader to various sources (Sameroff, 1995, 2000; Sameroff
& Chandler, 1975; Sameroff & MacKenzie, 2003). The other chapters in this
volume also provide excellent descriptions, illustrations, applications, and
extensions of the transactional model. I outline the key pieces of the model
that I believe are critical to specify a data analytic framework.

One definition of the transactional model comes from Sameroff (1995):
“In the transactional model the development of the child is seen as a product
of a continuous dynamic interaction of the child and the experience pro-
vided by his or her family and the social context” (p. 663). Sameroff and
MacKenzie (2003) stated that

transactions are documented where the activity of one element changes
the usual activity of another, either quantitatively, by increasing or
decreasing the level of the usual response, or qualitatively, by eliciting or
initiating a new response, for example, when a smile is reciprocated by a

frown. (p. 617)

The transactional model has several key properties, including multiple
observations (time) over multiple variables of several interacting individuals.
The nature of the social interaction creates a context tHat can also influence
the variables. In this sense some variables are endogenous because they are
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response variables, which could also serve as predictor variables. The transac-
rional model allows for heterogeneity of response (people differ from each
other); it takes a dynamic perspective because it focuses on change over time;
it is path dependent and nonlinear. It posits bidirectional reciprocal relation-
ships between variables. The multivariate structure of the transactional model
is rich. It includes person variables, genetic variables, biological variables,
societal variables, environmental variables, parental and caregiver/socializer/
teacher variables, cultural variables, neighborhood variables, and economic
variables, as many of the chapters in this volume illustrate.

In this chapter I outline a few statistical properties that are relevant to
implementing the transactional approach in an analytic framework, although
I cannot review every statistical detail related to the transactional model in
this short chapter. I extend here the article by Sameroff and MacKenzie
(2003) that couched the transactional model within a few standard statisti-
cal models. Throughout the chapter I assume normally distributed interval
data though at some points mention areas in which both models for other dis-
tributions (such as Poisson for counts) and extensions to nonparametric
models exist. The chapter is organized around the key properties of the trans-
actional model—a multivariate, dynamic, endogenous, heterogeneous, path-
dependent system involving multiple individuals.

DESCRIBING MULTIVARIATE PROCESSES OVER TIME

One needs to be able to visualize the phenomenon under investigation.
Psychologists typically do not make as much use of graphs as they should (a
strong case for the use of graphs in regression models was made by Gelman &
Hill, 2007). They are familiar with graphs to diagnose models (such as using
residual plots in regression analyses to detect outliers, to check the equality
of variance assumption, and to check the normality assumption). Psycholo-
gists also use graphs to plot means and trends over time and to highlight
details in multivariate time series.

In multivariate time series with k variables in t time points, one observes
a data matrix for a single subject structured as

Yo Yz 0 Y
Yo Yo o (12.1)
Y Y2 0 el

where each row denotes a different measured variable and each column a differ-
ent time. In general, there may be missing cells in this matrix (e.g., the partici-
pant decided not to respond to a variable at a particular time, the researcher
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chose to omit the variable at a particular time, or some event occurred pro-
hibiting an observation).

The standard plot most people construct has time on the horizontal axis
and the dependent variable on the vertical axis, thus displaying the depen-
dent variable as a function of time. Curves can be plotted for individual sub-
jects to illustrate trajectories. Psychologists tend to take each row of the data
matrix (a single variable for a single subject over ¢ time points) and plot each
row against time. Recent advances in latent growth curve analyses wrap sta-
tistical theory around the fundamental properties of such a plot (e.g., random
effects on intercept and slope terms to handle heterogeneity).

A different type of plot shows multiple variables changing in time on the
same plot. That is, multiple rows in the previously described matrix are plot-
ted on the same graph. One way to accomplish this is by plotting variables
against variables (as opposed to variables against time) with time as an implicit
variable. For instance, Figure 12.1 shows a plot for an individual subject’s meals
throughout a particular day. The complete variation of the percentage of the
meal’s carbohydrate, fat, and protein content (which sum to 100%) creates a
triangle on which each vertex corresponds to a meal with 100% of that com-
ponent. For instance, the point (0%, 100%) corresponds to a meal (unrealis-
tic as it may be) that is 100% fat. The other two vertices denote meals that
consist of 100% of the other two components. A point in the interior of the
triangle corresponds to a meal that has some combination of all three compo-
nents. To use a concrete example, a meal that is %, %, and % for each of the
components is depicted as the point (33%, 33%) in the triangle. The three
meal components sum to 100%, so only two axes are needed to display all
three components (the third component is implicit in the graph). I chose to
make carbohydrate the implicit component in. the graph.

The plot can display more information. For instance, the size of the
point can be related to the number of calories, so together the location of the
point in the triangle and the size of the point inform the viewer about the key
elements of the meal (composition and calories). Time can be depicted as the
trajectory of points within the triangle. In this way the meals (including time)
can be represented in the triangle. On a computer screen, the graph can be
animated so that the trajectory over multiple days can be visualized relatively
easily. My collaborators Grazyna Wieczorkowska and Malgorzata Siarkiewicz
and I have used this representation to understand actual diets of research par-
ticipants over several weeks. We have also used color to code points to reflect
a sixth variable such as self-reported hunger (the other five variables are per-
centage of carbohydrate, protein, and fat of the diet; the number of calories;
and time). By studying how the points move around the triangle and lagging
the hunger variable various hours prior to and after the meal, we can exam-
ine, for instance, how hungry a participant feels after a predominantly high-
protein meal with low calories compared with a high-calorie predominantly
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Figure 12.1. Triangle plot depicting four time-stamped meals in one day; the per-
centage of fat, carbohydrate, and protein for each meal; the number of calories
(related to the size of the circle); and the hunger (related to the gray scale of the
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the study of social engagement between parent and child (Hollenstein,
Granic, Stoolmiller, & Snyder, 2004). There are different types of plots that
are also useful with multivariate dynamic data, such as plots that illustrate the
relation between a variable and its first derivative (e.g., Boker & McArdle,
1995) and plots of parameters, which can facilitate mode] comparison (e.g.,
Pite, Kim, Navarro, & Myung, 2006).

Statistical and Software Implementations

ages such as Maple and Mathematica or specialized programs ( e.g., Boker &
McArdle, 1995).

Researchers sometimes counter with, “Looking at graphs is a great idea,
but how do I convey them in a paper?” Obviously, it is not possible to include
every graph in a paper, and animated graphs cannot be depicted on the printed
page. Key findings, though, need a corresponding table or graph. Consider how

accompanied by a table or graph of means. As résearchers move into fancier

statistical techniques, including growth curve analysis, multileve] models, and
dynamic processes, it becomes necessary to develop corresponding methods of

seen as important and as providing clues about key elements of the underlying
process. Psychologists need to use statistical analyses that (a) make it straight-
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forward to estimate and describe how people differ; (b) do not make unrealis-
tic assumptions that all people have the same degree of responsiveness to a
manipulation; (c) make it easy to find the predictors of such individual differ-
ences; and, if needed, (d) allow variability to be a predictor of other variables.

One freeing aspect of modern statistics is that it is no longer necessary
to make simplifying assumptions that all participants within a treatment
group are the same or respond to treatment the same way. It is relatively easy
to extend the standard statistical models so that heterogeneity is permitted in
the parameters—a statistical way of saying that there are individual differ-
ences. Coupled with a multilevel model approach, or a Bayesian approach to
statistical estimation and inference, it is fairly routine to proceed with statis-
tical models that encompass heterogeneity.

The idea underlying a latent growth curve is that there is a common
curve that characterizes a general trend, but there is variability across indi-
viduals. Each person can be endowed with his or her own curve, modeled in
an efficient way, on which interindividual differences are examined simulta-
neously with intraindividual differences. This follows from new developments
in random-effects analysis, multilevel modeling, and also structural equation
modeling. The curve is decomposed into key components such as a slope and
intercept in the case of a straight line trajectory, and those components are
treated as random effects that permit the modeling of heterogeneity. To me,
this is the major benefit that random-effects models offer—they allow one to
model heterogeneity. As a side benefit, they also allow a more solid general-
ization to the population (which is the aspect that many in the field believe
is the key benefit of random-effects models).

Latent class models allow one to find groups of individuals who respond
similarly. Intuitively, if we take points in parameter space, then individuals
with similar parameters form a cluster. Latent class analysis and its extensions
deal with the problem of finding such clusters of parameters, such as which
subjects have similar slopes and intercepts.

Rather than finding clusters, latent growth curve analysis allows each
subject to have his or her set of parameters. Intuitively, one can view latent
growth curve analysis as a latent class with N clusters (i.e., one cluster for each
subject).

Sameroff and MacKenzie (2003) pointed out that although there may
be variability in the individual observations and traits, there may be constants
in the types of processes that maintain the relation between the individuals
and the context. One of the obvious constants is that the person is part of the
context. ] am impressed with the politeness of many undergraduates who hold
the door open or hold the elevator for me as I approach. This could be a gen-
eral trait of undergraduates or it could be that the graying, middle-aged man
who looks like a professor is a common element in those social interactions
between me and the undergraduates.
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Statistical and Software Implementations

Perhaps the simplest model that includes a form of heterogeneity is the
simple paired t test. Indeed, every repeated measures ANOVA includes hetero-
geneity. | illustrate with the simple paired ¢ test. The standard parameter-
ization for this model is

Y, =p+a,+m+¢, (12.2)

where each observation Y; for subject i at time j is modeled as a function of
four terms: a constant p for all subjects at all times, a fixed-effects time param-
eter @ that codes the main effect for the difference between Time 1 and
Time 2, a random-effects subject parameter  that codes the main effect for
subject, and the usual error term €. The 7 terms model individual differences
and form the key aspect of what people talk about when they say that a
repeated-measures ANOVA can be more powerful than a between-subjects
ANOVA because it controls for individual differences. Unfortunately, the
standard application of a repeated-measures ANOVA treats individual dif-
ferences as something to control to reduce the error term. This is not a limi-
tation of the statistical technique but a constraint imposed by how the model
is typically used and how it is interpreted. It is possible, as one sees in multi-
level models, to embrace individual differences as something to understand,
model, and predict.

Latent class analysis can be implemented in various statistical pro-
grams. Nagin (1999) has SAS macros for latent class analysis of growth
curves. The package flexmix in R allows for the fitting of latent classes in
general regression contexts. Latent growth curves can be implemented in
standard multilevel programs (e.g., HLM, MIWin) as well as structural
equation programs (e.g., LISREL, EQS, AMOS). The statistical package
Mplus provides much flexibility for incorporating latent class in standard
multilevel and structural equation models. Gibbons and Hedeker (see
http://tigger.uic.edu/~hedeker/mix.html) have developed specialized pro-
grams for random-effects models for advanced regression such as survival
analysis and ordinal regression.

The Bayesian approach provides a natural way to implement multilevel
models. Once the analyst assumes a distribution over parameters, then the
analyst is in the domain of multiple levels. Bayesian implementations, how-
ever, still require some programming on the part of the user for all but the sim-
plest analysis problems. A good Bayesian software program is WinBUGS, and
there are several packages in R that implement Bayesian approaches (e.g.,
MCMCpack). The package MLWin provides a simple Bayesian estimation
approach to multilevel models.
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NONLINEARITY

Trajectories need not be straight lines. There may very well be impor-
rant psychological information in the nonlinearity. At what age does a
process begin? At what age does the process accelerate or produce a dramatic
change in another variable? At what age does the curve hit asymptote? Once
one can parameterize such questions, one can ask second-order questions such
as what variable predicts the point at which acceleration begins and what
processes control the time at which the asymptote occurs? In other words,
once one operationalizes a psychological property asa parameter and treats it
as a random variable to allow for heterogeneity, then one can predict that
parameter (as in any multilevel model). The additional concept here over the
previous section of this chapter is that I am now dealing with parameters from
a nonlinear representation.

Most psychological researchers who model nonlinearities restrict them-
selves to polynomials. The usual statistical advice is as follows: If something
is not a straight line, try a quadratic. If that does not work, try a cubic, and so
on, until you geta good fit. Thisisa mindless way to model curvature because
it merely models the number of bends in the curve—no bends is linear, one
bend is quadratic, two bends is cubic, and so on, with a bend being an inflec-
tion point in the curve or a point having a first derivation equal to zero.

A natural extension of polynomials is to model nonlinearity directly
through nonlinear functions. There is much work in mathematical psychol-
ogy in this regard, for example, in estimating models of reaction time distri-
butions, decision making, and performance (e.g., Busey & Loftus, 1994;
Gonzalez & Wu, 1999; Rouder, Lu, Speckman, Sun, & Jiang, 2005; Wu &
Gonzalez, 1996). The model by Busey and Loftus (1994) is relatively simple
to illustrate without getting into the experimental details. The problem is
digit recall when strings of four digits are presented for very brief durations.
The performance curves (chance corrected) fit quite well with a nonlinear
function of the following form:

0 (t<L)
P =\y(1 - et) (121) (123
where p is the proportion correct, t is the exposure duration of the stimulus, ¢
is the exponential growth constant, L is the maximum duration that gives
chance-level performance, and Y is asymptotic performance (which Busey &
Loftus, 1994, setto 1 in their article).
The interesting point about this functional form is that the parameters
have psychological meaning. Specifically, L is interpreted as the duration at
which the curve begins to move away from chance performance. In other
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words, the value of L is the time at which the process begins. The parameter
c indicates the rate of change; the parameter Y indexes the asymptotic level
of performance. It is possible to allow for heterogeneity by incorporating a
random-effects approach to the estimation, thus allowing each subject to
have his or her own values for the three parameters L, ¢, and Y. In this way,
the curves are modeled with parameters that provide relevant psychological
information. Contrast this approach with the more typical polynomial regres-
sion approach that merely indicates whether trajectories are linear, quadratic,
cubic, or some higher order (though compare with Cudeck & du Toit, 2002,
who reparametrized the quadratic into more interpretable and psychologically
relevant parameters).

There is a different sense of nonlinearity that is also relevant to the
transactional model. This form is related to dynamic systems theory and
involves, for example, models that are sensitive to starting configurations and
deal with nonlinear differential equations. There has been some attempt to
use dynamic systems theory in developmental psychology but a complete
review of this approach is beyond the scope of this chapter (see, e.g., Granic
& Hollenstein, 2003).

Statistical and Software Implementations

Most statistical packages allow nonlinear estimation techniques, includ-
ing the popular commercial packages SPSS and SAS. There are plenty of new
developments underway in the statistical community, including generalized
nonlinear regression that works for data that follow generalized exponential
distributions such as binomial, Poisson, gamma, and negative binomial.
Within the R program, two relevant packages are Imer and nlme.

There are also nonparametric techniques such as splines that can be
used to model nonlinearities. There have been new developments within the
Bayesian approach to include a random-effects approach to splines (i.e., each
subject is allowed to have a different number of knots as well as different knot
locations). An excellent example of this work is found in Kim, Menzefricke,
and Feinberg (2007). In this way it is possible to have interpretable parame-
ters (knots) of subject trajectories, allow for nonlinearities through splines,
and allow for heterogeneity through random effects in the parameters.

MULTIPLE INDIVIDUALS

People influence each other. Together, people create contexts that are
emergent and influence the behavior, thoughts, and feelings of individuals in
the group. There are processes related to both interdependence and similar-
ity that can occur with multiple interacting individuals. My collaborator Dale
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Griffin and I have written about these different approaches to modeling
dyadic and group data (Gonzalez & Griffin, 2001 ). Interdependence and sim-
ilarity challenge the usual statistical assumption of independence by intro-
ducing correlations across people. Statistical models of social interaction
include interdependence and similarity as psychological parameters that are
modeled rather than treated as nuisance variables that need to be eliminated
or controlled. For a recent book-length treatment, see Kenny, Kashy, and
Cook (2006).

For a long time, interindependence of data was treated as a nuisance
that needed to be eliminated or corrected. The focus had been on the nasty
effect violating independence had on standard errors and tests of significance.
The newer models change the emphasis of interindependence from one of
nuisance to showcasing the interdependence as a relevant psychological

e
(T ¥,

% property that needs to be captured, modeled, and understood (Gonzalez &
“é’ Griffin, 2000).

g One notion of interdependence can be captured using the actor—partner
= model (e.g., Cook & Kenny, 2005). The actor—partner model involves an exten-
f;.: sion of the standard cross-lagged regression path model to a situation of mul-

tiple variables over multiple people. Figure 12.2 depicts a simple model for

E distinguishable dyad members. The stability coefficients (horizontal paths a
and d) reflect the relation between two variables for the same person, par-
@ tialing for the cross-path (i.e., in the case of the dyad, for the other person’s

i (_'--_ predictor variable). Likewise, the cross-paths (paths b and c) represent the
influence of one person’s predictor on the other’s criterion variable, partialing

d

Figure 12.2. Actor—partner model. The focus is on partialing out one’s own influence
on different variables from the influence the partner has on one’s own variables. Hor-
izontal paths a and d reflect the relation between two variables for the same person,
partialing for the cross-path. The cross-paths b and c represent the influence of one
person’s predictor on the other’s criterion variable, partialing for the stability coefficient.
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for the stability coefficient. A simple example is that a predictor variable is
measured for both the mother and the child (X,, and X.). A second variable
is also measured for both the mother and the child (Y,, and Y,). Errors are cor-
related because individuals are members of the same dyad or group. The
model is modified slightly when the two individuals are exchangeable, such
as in same-sex couples or same-sex siblings (D. Griffin & Gonzalez, 1995),
and can be extended to groups (Gonzalez & Griffin, 2001).

A different type of interdependence is based on similarity. The latent
variable model captures similarity, or shared variance, at the dyad level as dis-
tinct from unique variance at the individual level. The latent variable model
allows for correlations across the dyad-level latent variables (group-level cor-
relation) as well as correlations across the unique variance for the same indi-
viduals (individual-level correlation). As shown in Figure 12.3, in the case of
two variables for each dyad member, one can model the shared variance on
each person as well as each dyad. As with the actor—partner model, modifica-

tions to exchangeable cases and groups have been made (Gonzalez & Griffin,
2001; D. Griffin & Gonzalez, 1995).

Statistical and Software Implementations

Models for nonindependence across multiple individuals can be imple-
mented in multilevel models and in structural equation models as well as in
simple Pearson correlations once the data are organized in an appropriate

manner (e.g., Gonzalez & Griffin, 1999; D. Griffin & Gonzalez, 1995; Olsen

X, : Y, Y
X \e » Y

I'y

Figure 12.3. Latent variable model. The focus is on (dis)similarity within dyad members.
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& Kenny, 2006; Woody & Sadler, 2005). One can take a multilevel approach
that individuals are nested within the dyad (or group). Thus, interdependence
can be captured and modeled through the nesting procedure. One implemen-
ration of this approach assigns a different linear equation to each person and
estimates covariances of parameters across equations, that is, the covariance
of the same parameter over two people (Barnett, Marshall, Raudenbush, &
Brennan, 1993). Or, equivalently, one may take a structural equation model-
ing approach and add another layer of latent variables to represent the group
as shared variance from the individuals who compose the group (e.g., Gonzalez
& Griffin, 1999; Kenny & la Voie, 1985). There are additional complications
in implementing analyses in statistical packages, such as whether the dyad
members are exchangeable or distinguishable. The extension to longitudinal
dyadic or group data analysis necessary for testing transactional models is sill
in its infancy, though for preliminary suggestions see (Gonzalez & Giriffin,
2002). W. Griffin (2000) provided a coordination index for multiple individ-
uals along with ideas for visualization and animation of the process. Another
interesting extension is the added richness that can emerge from data that have
a round-robin structure (e.g., Cook & Kenny, 2004). Much progress is needed
though to capture the interdependent processes that are posited in the transac-
tional model—multiple people across multiple variables with bidirectional,
reciprocal relations.

ENDOGENEITY

The property of endogeneity may be one of the most important compo-
nents of the transactional model. Usually, an endogenous variable is defined as
a variable that is modeled as inside the system being studied. An endogenous
variable can be observed o latent; it is predicted by other variables, and it can
also predict other variables. By contrast, an exogenous variable is a variable
outside the system being studied and so cannot be modeled as a dependent
variable within the system.

The transactional model posits that multiple people influence each other
across multiple variables over time. Hence, one individual influences another
and vice versa. This leads to problems of bidirectionality as discussed by
Sameroff and MacKenzie (2003). There are also corollary processes to endo-
geneity. There are processes that are emergent within the system. Emergent
properties are those that are not necessarily observable at, say, the individual
level but are observable at a higher level of analysis such as the group level.
The hydrogen atom has particular characteristics, as does the oxygen atom,
but the H,O molecule has emergent properties that are not easy to predict
from only the properties of the individual atoms. Psychological examples of
emergent properties are constructs such as norms and groupthink, which can
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be modeled as group-level processes that are not so easy to understand from
merely knowing the properties of individual group members,

Economics has been dealing with endogeneity for a long time. Theoret-
ical relations between supply and demand are endogenous and bidirectional.
Demand changes supply; supply changes demand. In economics, such processes
are modeled through simultaneous equations. Demand may be influenced by
supply along with a set of predictor variables; supply may be influenced by
demand along with a set of (not necessarily overlapping) predictor variables.
A body of econometrics is devoted to these kinds of bidirectional models (eg.,
Haavelmo, 1943; Yang, Chen, & Allenby, 2003).

Endogeneity characterizes the idea that although the system influences
me, [ also influence the system because I am part of the system. That is, [

behavior (see also chap. 11, this volume). The physicist Robert Savit and I,
in collaborative research, modeled the decision-making behavior of individ-
uals in a group in which the Outcomes given to each group member depended
on the group decision (Savit, Koelle, Treynor, & Gonzalez, 2004). The out-
come is created by the decisions of each group member. Many aspects of social
cognition, for example, that borrow ideas blindly from cognitive psychology
to model social psychological processes miss the key idea that in social inter-
action the social stimuli that make up the cognitive machinery “look back”
and interact with the social perceiver. Such an interaction with stimul; and
subject is not usually possible in the standard cognitive study, and attempts
by researchers to apply such models from cognitive psychology to social inter-
action when the possibilities for endogeneity are high are likely to fail in mod-
eling complicated social interaction (Ickes & Gonzalez, 1994).

Statistical and Software Implementations

Structural equation modeling can handle endogeneity and also the
simultaneous equation problem (e.g., supply and demand). One merely sets
up a linear equation for demand and a linear equation for supply (with sup-
ply as one of the predictors for demand and demand as one of the predictors
for supply). Each equation has its own error term, and the error terms are cor-

related because the two equations are estimated from the same data. Details
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equation framework. There are identification difficulties one may encounter,
so bidirectionality is not as straightforward as merely adding two arrows in
opposite directions to the usual “square—circle—arrow" structural equation
graph. Some of these difficulties are discussed in path analysis and structural
equation modeling textbooks such as Kenny (1979).

DYNAMIC PROCESSES

People change. It is obvious that time is a necessary aspect of change.
To understand a dynamic process, though, one typically needs more than two
time points. As Rogosa, Brandt, and Zimowski (1983) pointed out in their
defense of difference scores to measure change, the difference of two time
points can be interpreted as a slope. But to have 2 rich data source to test
dynamic processes it is necessary to have more than two time points.

There has been recent interest in nonlinear dynamical systems (e.g.
Durlauf & Young, 2001; Gottman, Murray, Swanson, Tyson, & Swanson,
2002; Nowak & Vallacher, 1998). These analytic tools promise to provide
much insight into dynamic processes. However, a major chunk of the work
has been isolated to computer simulation and has focused on studying how
the parameters of the model in different combinations produce different
observable behavior. Much knowledge can be gained from this approach if
used properly, but it is DOt the standard data-fitting exercise. Indeed, I am
aware of very few cases in which model fitting in the sense of using data to
find the best fitting set of parameters in a dynamic system isa tractable prob-
lem. In many cases, the parameters themselves are highly intercorrelated,
making a general estimation routine intractable.

Statistical and Software Implementations

Time-series analysis is 2 standard analytic approach that psychologists
use with repeated measures. A major focus of this approach is the autocorre
lation due to repeated measurement. In some Cases this autocorrelation is
treated as something that needs to be corrected, whereas in other cases the tem-
poral correlations are the exciting aspects of the data to mine. As mentioned in
an earlier section, Boker and McArdle (1995) provided one attempt to use data
to analyze graphically the properties of dynamic systems. Developing statisti-
cal analyses of dynamic Systems that include data fitting and parameter esti-
mation is still, in my opinion, an open area of research. Boker and
Nesselroade (2002) provided insights into dynamical systems and discussed
the challenges in implementing statistical estimation with few time observa-
tions and in the presence of measurement error.
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PATH DEPENDENCE

It matters where I came from. The property of endogeneity reviewed in
the previous section produces a further nuance: Not only do variables influ-
ence each other, but there are processes that constrain future responses and
outcomes. If a child throws 3 temper tantrum, the parent has various ways to
respond, but the act of the temper tantrum constrains the parent’s potential
responses. Likewise, once the parent selects a response to the temper tantrum,
that response constrains or affords subsequent behaviors of the child. Such a
process is represented in Figure 12.4. The child performs an action a. The par-
ent has several responses and chooses one (depicted by the solid line seg-
ment). An optimal response for that situation is denoted with an asterisk.
Following the solid line path from left to right ( time), one sees that the child
has several actions at & not all of which may be optimal. If the child’s choice

system is said to be path dependent. Heckman’s (2005) framework of causal-

Child’s Parent’s Chiid’s Parents  Child’s Parent's Child's
Action Action Action Action Action Action  Action

Figure 12.4. Sequence of child—parent behaviors in which each behavior provides
constraints for the next turn. An asterisk denotes an optimal response.
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choice assigns constraints to child’s behavior, child’s behavior assigns con-
straints to parent’s behavior, and so on.

Contemporary researchers in computer science and neuroscience have
rediscovered concepts from the learning literature (e.g., Hebbian learning)
and have developed new models called, broadly, reinforcement learning models
(Sutton & Barto, 1998). Most of these models assume the Markov property
of path independence, but these models show promise for allowing the mod-
eling of path-dependent processes. I am aware of some applications of
reinforcement learning models in economic behavior and decision making
(Erev & Roth, 1998; Salmon, 2001). There is opportunity to develop statis-
tical models that permit testing of path-dependent transactional processes.

Statistical and Software Implementations

A very promising statistical approach in the spirit of such models that
permit path dependence is the state space approach developed by Granic
and Hollenstein and colleagues (e.g., Granic & Hollenstein, 2003; Granic,
Hollenstein, Dishion, & Patterson, 2003; Granic & Lamey, 2002; Hollenstein
et al., 2004). The extension of traditional models based on conditional prob-
abilities to allow for path dependence is an exciting open area of research
that could use various new developments in complex systems. Gardner
(1990) presented a Markov model for sequential categorical data that allows
for heterogeneity. W. Griffin and Gardner (1989) provided a framework for
path independent models of duration data in social interaction and pointed
to the difficulty of adding heterogeneity to such models within a classical
statistical approach.

CONCLUSION

In this chapter, I have presented a brief conversation about interesting
issues that a transactional perspective to developmental psychology poses for
statistical models. There are many details I did not elaborate and many issues
I could not discuss. Sameroff and MacKenzie (2003), for example, discussed
examples of the transactional model involving experimental manipulations,
quasi-experimental designs, naturalistic observations, and intervention
studies. There have been many exciting developments in the statistics com-
munity around the problems of inferring causality in cases in which random-
ization is not possible (e.g., Heckman, 2005; Rubin, 2005). The general
approach is to model the observation and its corresponding counterfactual,
such as what the observation would have been had the case been in another
condition. This approach has provided several new advances: new ways
of dealing with covariates such as propensity scores, new ways of dealing
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with differential dropout rates, new ways of handling matching designs, and
new ways of modeling missing data. It may provide a useful framework for
developing some of the extensions that are needed to implement the trans-
actional model.

There has been a long-standing appreciation of the power of models
in our understanding of developmental processes (Sameroff & Chandler,
1975; Sameroff & MacKenzie, 2003; Sigel & Parke, 1987). Likewise, there
are many new developments in the statistics and biostatistics literature for
general models of repeated measurements that have direct relevance to the
transactional model (e.g., Lindsay, 2004; Vonesh & Chinchilli, 1997). But
there is much left to develop. This chapter has met its goal if it has alerted
developmental psychologists to some of these new statistical tools and has
made it clear that for these statistical tools to be useful one needs to be clear
about the features of the psychological model. There is a transactional
model of sorts between the theory one wants to test and the statistical pro-
cedures one uses to test that theory.
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