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Abstract
Original and cumulative prospect theory differ in the composition rule used to

combine the probability weighting function and the value function. We test the

predictive power of these composition rules by performing a novel out-of-sample

prediction test. We apply estimates of prospect theory’s weighting and value

function obtained from two-outcome cash equivalents, a domain where original and

cumulative prospect theory coincide, to three-outcome cash equivalents, a domain

where the composition rules of the two theories differ. Although both forms of

prospect theory predict three-outcome cash equivalents very well, at the aggregate

level, we find small but systematic under-prediction of cash equivalents for

cumulative prospect theory and small but systematic over-prediction of cash

equivalents for original prospect theory. We also observe substantial heterogeneity

across subjects and types of gambles, some of which is accounted for by differences

in the curvature and elevation of the weighting function across individuals. We also

find differences in prediction related to whether the worst outcome is zero or non-

zero.
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1 Introduction

The St. Petersburg’s Paradox challenged the notion that decision makers should

choose the risky alternative that maximizes expected value (Bernoulli, 1738). In the

nearly four centuries since Bernoulli, expected value as a descriptive theory of

decision-making under risk has advanced in several important respects. A family of

modern descriptive theories of decision under risk depart from expected value

maximization in three essential ways: the transformation of outcomes, the

transformation of probabilities, and the composition rule that combines the two

transformations. Prospect theory (Kahneman and Tversky 1979; Tversky and

Kahneman 1992) has emerged as the frontrunner of these descriptive theories (see

reviews of empirical evidence in Barberis (2013); Camerer (1992, 1995); Dhami

(2016); Fox et al. (2015); Starmer (2000); Wu et al. (2004); for alternative

viewpoints, see Birnbaum 2004, 2006, and Birnbaum 2008). In prospect theory,

outcomes are transformed by an S-shaped value function, typically concave for

gains, convex for losses, and steeper for losses than gains, whereas probabilities are

transformed by an inverse S-shaped probability weighting function, most commonly

concave for small probabilities and convex for medium and large probabilities (see

also Edwards 1954; Preston and Baratta 1948).

A substantial empirical and theoretical literature has generally supported these

two aspects of prospect theory. In contrast, the third piece, the composition rule, has

received relatively little direct empirical attention (a review of relevant work

appears later in this paper). Moreover, the choice of the composition rule is not

trivial: original prospect theory (OPT; Kahneman and Tversky 1979) and its

descendent, cumulative prospect theory (CPT; Tversky and Kahneman 1992) differ

in how these two transformation functions are combined, and, consequently, in how

gambles with three or more outcomes are valued.

This paper investigates the empirical merits and shortcomings of the two

representations. We perform a test that exploits the following observation: CPT and

OPT coincide for two-outcome gambles but differ for gambles with three or more

outcomes. This linkage allows us to perform a novel test—for each of our

experimental participants, we estimate prospect theory parameters for two-outcome

gambles, a domain where the two models concur. We then apply these estimates to

three-outcome gambles, a domain where the models diverge. As a result, we can test

whether CPT and/or OPT fit three-outcome gamble data well and document the

nature of systematic discrepancies between actual and predicted cash equivalents.

The paper proceeds as follows. We first present the two models and review

previous empirical research. We then review one of our previous studies (Gonzalez

and Wu 1999) in which we estimate the probability weighting function on two-

outcome gambles (where the two models coincide). We supplement this analysis

with previously unreported data from 37 participants. We then use three-outcome

gambles as a holdout sample to test how the two models perform. At the aggregate

level, both models perform well, but are biased in a predictable manner: CPT

slightly under-predicts and OPT slightly over-predicts the cash equivalents of three-

outcome gambles. This pattern, however, masks the considerable heterogeneity
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across types of gambles and across participants. A large part of this heterogeneity

can be linked to differences in the curvature and elevation of the probability

weighting function across individuals. The two models also perform differently

depending on whether the worst outcome is zero or non-zero. Finally, we conclude

with thoughts on how this analysis offers new insights about psychological

processes underlying choice among complex gambles, as well as recommendations

on which prospect theory to use for applications.

2 Prospect theories

2.1 Preliminaries

In this section, we review original prospect theory (OPT, Kahneman and Tversky

1979) and cumulative prospect theory (CPT; Tversky and Kahneman 1992; see also

Luce and Fishburn 1991; Starmer and Sugden 1989; Wakker 1994, 2010; Wakker

and Tversky 1993). Let ðp; x; q; y; 1 � p� q; zÞ denote a prospect that gives p
chance at x, q chance at y, and 1 � p� q chance at z, where x[ y� z� 0.1 We first

present Kahneman & Tversky’s (1979) original formulation of OPT for two-

outcome gambles, where z ¼ 0 and pþ q ¼ 1, where the gamble is denoted

(p; x; 1 � p; yÞ for short. The function VO on the reals represents the preference

between two gambles (i.e., �), with the subscript O denoting ‘‘original’’

ðp; x; 1 � p; yÞ � ðp0; x0; 1 � p0; y0Þ
()

VOðp; x; 1 � p; yÞ

¼

pðpÞvðxÞ þ ½1 � pðpÞ�vðyÞ

0
BB@

1
CCA�

VOðp0; x0; 1 � p0; y0Þ

¼

pðp0Þvðx0Þ þ ½1 � pðp0Þ�vðy0Þ

0
BB@

1
CCA;

ð1Þ

where p : ½0; 1� ! ½0; 1� is a probability weighting function; vð�Þ is a value function
defined with respect to a reference point, with vð0Þ ¼ 0; VOð�Þ is the OPT func-

tional. OPT requires that the decision weights attached to outcomes x and y be pðpÞ
and 1 � pðpÞ, and therefore, decision weights sum to 1 in this case. It is important to

note that Representation (1) applies to two-outcome gambles in which y ¼ 0 and

y[ 0. Below, we show that OPT’s representation for two-outcome gambles is

identical to CPT.

We next turn to three-outcome gambles in which z ¼ 0 and pþ q\1

VOðp; x; q; y; 1 � p� q; 0Þ ¼ pðpÞvðxÞ þ pðqÞvðyÞ: ð2Þ

In this case, the decision weights attached to x and y are pðpÞ and pðqÞ, respectively,

with the weight attached to outcome 0 not requiring specification, because

vð0Þ ¼ 0, and, therefore, the weight becomes irrelevant.

1 Because our gambles involve only non-negative outcomes, we do not consider representations for either

loss gambles or mixed gambles.

123

Composition rules 649



Whereas, Kahneman and Tversky (1979) only specified OPT for gambles with

two non-zero outcomes, others have extended OPT in Representation (2) to the case

of z[ 0 (see, e.g., Camerer and Ho 1994; Fennema and Wakker 1997):2

VOðp; x; q; y; 1 � p� q; zÞ ¼ pðpÞvðxÞ þ pðqÞvðyÞ þ pð1 � pþ qÞvðzÞ: ð3Þ

Both representations in (2) and (3) have been criticized, primarily because they

permit violations of stochastic dominance (Fishburn 1978; Luce 2000; see also,

Wakker 2010, Section 5.3).

Rank-dependent utility (RDU), proposed by Quiggin (1982; see also, Green &

Jullien, 1988; Quiggin 1993; Segal 1989; Wakker 1989; Yaari 1987), avoided this

problem. In turn, Tversky and Kahneman (1992) adopted RDU in their formulation

of cumulative prospect theory. CPT consists of two separate RDU representations

for losses and gains. Under this model, the value of ðp; x; q; y; 1 � p� q; zÞ is given

by

VCðp; x; q; y; 1 � p� q; zÞ ¼ pðpÞvðxÞ þ ½pðpþ qÞ � pðpÞ�vðyÞ þ ½1 � pðpþ qÞ�vðzÞ;
ð4Þ

where VCð�Þ is the CPT functional. In contrast to OPT, the decision weight for an

outcome depends not only on the probability of that outcome, but also on the rank

position of that outcome relative to other outcomes in the gamble. Stochastic

dominance violations are prohibited under the CPT representation in (4).3 More-

over, RDU, and hence CPT, also generalizes easily and naturally to an arbitrary

number of outcomes, as well as from the domain of decision under risk to decision

to uncertainty.

2.2 Psychological differences between OPT and CPT

Fennema & Wakker (1997; also Diecidue and Wakker 2001) noted that CPT was

not merely a technical improvement over OPT that eliminated violations of

stochastic dominance and generalized to an arbitrary number of outcomes. CPT and

OPT offer different empirical content. Whereas OPT and CPT coincide for two-

outcome prospects [Representations (1) and ( 4)]; the two models differ in how

prospects with three or more outcomes are valued.

Which of the two model values complex gambles most accurately? To answer

this question, we first ask: when is the cash equivalent under OPT higher than under

CPT, and when is the opposite true? Before we derive some predictions, we

consider a typical probability weighting function, shown in Fig. 1. The weighting

function is inverse S-shaped, concave for small probabilities, and convex for large

probabilities (Wu and Gonzalez 1996), and exhibits lower subadditivity,

pðpÞ[ pðpþ qÞ � pðqÞ for pþ q\1, as well as upper subadditivity, 1 � pð1 �
pÞ[ pð1 � qÞ � pð1 � q� pÞ for 1 � q� p[ 0 (Tversky and Wakker 1995).

2 This representation has also been referred to as ‘‘separable prospect theory’’ (e.g., Camerer and Ho

1994)
3 While this is viewed as a feature by some, there has been evidence suggesting violations of stochastic

dominance (e.g., Birnbaum 2006; Tversky and Kahneman 1986).
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Lower and upper subadditivity hold empirically both at the level of aggregate data

(Tversky and Fox 1995; see also, Abdellaoui 2000; Bleichrodt and Pinto 2000; Fox

and Tversky 1998; Gonzalez and Wu 1999) and at the level of the individual subject

(Abdellaoui 2000; Bleichrodt and Pinto 2000; Gonzalez and Wu 1999). Informally,

lower subadditivity captures the boundary effect near zero, often called the

possibility effect, while upper subadditivity captures the boundary effect near 1,

often called the certainty effect. In addition, the probability weighting function

intersects the identity line below p ¼ 0:5, a property called subcertainty (Kahneman

and Tversky 1979; Tversky and Kahneman 1992), which can be interpreted as

consistent with the certainty effect being larger than the possibility effect (Tversky

and Fox 1995), although there is substantial heterogeneity (e.g., Bruhin et al. 2010;

Fehr-Duda et al. 2006; Gonzalez and Wu 1999; Murphy and ten Brincke 2018).

These typical properties of the weighting function, in turn, help us understand the

ordering of differences in how CPT and OPT value three-outcome gambles. We

start with z ¼ 0. It is straightforward to show that OPT overvalues a gamble relative

to CPT if pðpþ qÞ\pðpÞ þ pðqÞ for pþ q\1, or if the probability weighting

function exhibits lower subadditivity.

The answer is more complex for z[ 0. Comparing the OPT and CPT

Representations, (3) and (4), respectively, yields VOðp; x; q; y; 1 � p�
q; zÞ[VCðp; x; q; y; 1 � p� q; zÞ if pðpÞ þ pðqÞ � pðpþ qÞ½ �vðyÞ[ 1 � pðpþ qÞ½
�pð1 � p� qÞ�vðzÞ. The standard qualitative restrictions on the weighting function

do not indicate when this inequality holds, because pðpÞ þ pðqÞ � pðpþ qÞ[ 0 if

Fig. 1 A typical probability weighting function, pð�Þ. The weighting function is inverse S-shaped,
concave for small probabilities, and convex for medium to large probabilities, and intersects the identity

line below 1
2
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the weighting function is lower subadditive, but pðpþ qÞ þ pð1 � p� qÞ\1 if the

weighting function is subcertain (i.e., pðpÞ þ pð1 � pÞ\1). However, it appears

that, for typically observed weighting functions, OPT overvalues gambles with a

positive worst outcome relative to CPT. We show this by considering the special

case of the neo-additive probability weighting function or piecewise linear

weighting function, pðpÞ ¼ aþ ð1 � a� bÞp, used by Kothiyal et al. (2014) and

Tversky and Fox (1995), among others. For this function, a is a measure of lower

subadditivity (i.e., pð�Þ � a for � near 0), with b a measure of upper subadditivity

(i.e., pð1 � �Þ � 1 � b). Tversky and Fox (1995, Table 4) found that b � 2a, which

is sufficient to produce overvaluation of OPT relative to CPT, because

VOðp; x; q; y; 1 � p� q; zÞ[VCðp; x; q; y; 1 � p� q; zÞ if avðyÞ[ ðb� aÞvðzÞ, or,

since vðyÞ[ vðzÞ, if b� 2a.

Thus, commonly observed empirical properties of the weighting function

indicate that OPT will typically overvalue a three-outcome gamble relative to CPT.

It is still, however, unclear which of the two models is more appropriate for

modeling gambles with more than two outcomes. To begin answering this question,

we note that the two composition rules differ in an important psychological sense.

Consider, for example, the gamble ðp; x; p; y; 1 � 2p; 0Þ. OPT gives no precedence

to the highest or second highest outcome, i.e., the decision weights for the outcomes

are identical: pðpÞ. In contrast, under CPT and a lower subadditive pð�Þ, the second

highest outcome is ‘‘marginal,’’ or receives less weight, than the highest outcome,

i.e., pð2pÞ � pðpÞ versus pðpÞ. Thus, CPT generalizes the idea of diminishing

sensitivity from merely being a distortion of probabilities (a property of the

weighting function, see Fig. 1) to also affecting the weight attached to outcomes (a

property of decision weights, Fennema and Wakker 1997). This highlights the

interrelation between the choice of the weighting function and the choice of the

composition rule. In other words, under CPT with probabilities held constant,

extreme outcomes (highest and lowest) receive more weight relative to intermediate

outcomes.

2.3 Empirical findings

Almost all of the standard violations of expected utility are consistent with both

OPT and CPT. The common-ratio effect (Kahneman and Tversky 1979) involves

only one non-zero outcome, and thus is explained identically by both models (Prelec

1998). The original common-consequence effect (Kahneman and Tversky 1979)

involves at three outcomes and, therefore, may lead to different predictions (Wu and

Gonzalez 1998). However, the common-consequence form of the Allais Paradox

and more generalized common-consequence effect violations can be explained by

OPT and CPT equally well (Wu and Gonzalez 1996).4

4 The two models use different properties of the weighting function to explain the patterns. For example,

Wu and Gonzalez (1996) show that one condition for concavity under CPT is a condition for lower

subadditivity under OPT.

123

652 R. Gonzalez, G. Wu



Goodness-of-fit tests paint a mixed picture. Wu and Gonzalez (1996) fit binary

choice data collected to test common-consequence effects using parametric

specifications for pð�Þ and vð�Þ. OPT fits the aggregate data slightly better, but is

outperformed by CPT on 3 of 5 ladders. Camerer and Ho (1994) fit OPT and CPT to

several datasets and found that OPT fits the data slightly better in maximum

likelihood tests. Of course, estimation and goodness-of-fit statistics confound tests

of models with assumptions about parametric forms of pð�Þ and vð�Þ (e.g., Stott

2006). Fennema and Wakker (1997) found that CPT explained the data of Lopes

(1993) better than OPT. Wakker (2003) showed that the mixed gamble of data of

Levy and Levy (2002) could be explained by CPT but not OPT.

Several studies have employed direct tests. Starmer and Sugden (1993)

documented that decision weights change depending on whether that outcome is

received in a single state or multiple states, an effect inconsistent with rank-

dependent models (see also Birnbaum 2008; Humphrey 1995). Wu (1994)

documented violations of an axiom known as ordinal independence (Green &

Jullien, 1998), thus providing one of the first counter-examples to RDU models.

Diecidue et al. (2007) measured decision weights and provided evidence for rank

dependence in the domain of decision-making under uncertainty. Wu et al. (2005)

developed a critical test of the two models based on the probability trade-off

consistency of Abdellaoui (2002). They observed that choices were consistent with

OPT, but not CPT, for gambles that do not involve a certainty effect, but consistent

with both models for gambles involving a certainty effect. Most recently, Bernheim

and Sprenger (2020) found prices elicited from an ‘‘equalizing reductions’’

elicitation task were insensitive to payoff rank, a finding inconsistent with rank-

dependent models (however, see, Abdellaoui et al. 2020).

3 Empirical study

In this section, we present a study designed to test how OPT and CPT predict three-

outcome gamble cash equivalents. As we previously noted, OPT and CPT are

identical for two-outcome gambles [see OPT and CPT representations (1) and (4),

respectively]. We thus adopt the strategy of fitting parametric forms of the value and

weighting function to two-outcome gamble cash equivalents. We then use these

estimates to predict cash equivalents for three-outcome gambles. The first step of

this procedure is presented in detail in Gonzalez and Wu (1999), so we provide only

a brief summary here.

3.1 Method

We report data from 47 participants, all of whom followed an identical procedure.

Data from the first 10 participants were reported in Gonzalez and Wu (1999).

Analyses of the additional 37 participants have not been previously published. Each

participant was paid $50 for participating in 4 1-h sessions, plus an additional fee

($50 on average) received for playing out one of their choices using an incentive

compatible elicitation procedure (Becker et al. 1964). Cash equivalents were
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elicited via price lists, using a computer program similar to that used in Tversky and

Kahneman (1992); details of this procedure are found in Gonzalez and Wu (1999).

The design consisted of 165 two-outcome gambles: 15 outcome levels crossed

with 11 levels of probability associated with the maximum outcome (see Gonzalez

and Wu 1999). Because all gambles offered non-negative outcomes, prospect theory

codes all outcomes as gains. In addition to the two-outcome gambles, there were 22

gambles that had two non-zero outcomes and one zero outcome, and there were 15

gambles with three non-zero outcomes (see Table 2). Finally, 9 of the 165 two-

outcome gambles were repeated.5 Thus, the entire study consisted of 211 gambles.

3.2 Two-outcome gamble results

Median cash equivalents for each gamble are found in the Appendix, Table 5. We

performed a nonlinear regression to estimate two-outcome cash equivalents,

assuming a power value function, vðxÞ ¼ xa, and the ‘‘linear in log odds’’

probability weighting function, pðpÞ ¼ dpc

dpcþð1�pÞc (see Gonzalez and Wu 1999, for

justification of these functional forms.) The parametric estimates, a, d, and c, for all

47 participants, as well as the median data, appear in Table 1. The probability

weighting and value functions for the median data are plotted in the top two panels

of Fig. 2, while plots for Participants 1 through 10 are found in Gonzalez and Wu

(1999) and the plots for all participants are shown the Appendix, Figs. 5 and 6. Note

that the median subject has a concave vð�Þ and inverse S-shaped pð�Þ, a pattern

exhibited by the majority of individuals. For the parametric specification used, a\1

indicates a concave value function, c\1 indicates an inverse S-shaped weighting

function, and d\1 indicates that the weighting function crosses the identity line for

p\ 1
2
, i.e., pð�Þ is subcertain. Across the 47 participants, a\1 for 33 participants

(sign test, p\:001), c\1 for 39 participants (sign test, p\:001), while d\1 for 30

participants (sign test, p ¼ 0:24). In addition, while there is substantial heterogene-

ity in curvature and in elevation of pð�Þ, d and c are essentially independent

(q ¼ :07, n.s.). Finally, the parameter estimates for participants 11 through 47 are

significantly closer to 1 than for participants 1 through 10 previously analyzed in

Gonzalez and Wu (1999).6

3.3 Three-outcome gamble results

We apply the parametric estimates of pð�Þ and vð�Þ from Table 1 to three-outcome

gambles (median cash equivalent data for each three-outcome gamble are presented

in Table 2). Consider the gamble ðp; x; q; y; 1 � p� q; zÞ. Using the OPT represen-

tation (3), the predicted cash equivalent (CE) under OPT, cCEO, is given by

5 The second occurrence of the repeated gambles is omitted from the analysis below.
6 Estimates for the median CE of the subset of participants 1 through 10 are: a ¼ 0:49, d ¼ 0:77, and

c ¼ 0:44 (see Gonzalez and Wu 1999). In contrast, the estimates for the median CE of the group of

participants 11 through 47 are: a ¼ 0:82, d ¼ 0:87, and c ¼ 0:75. This difference in risk attitudes reflects

in part a difference in recruiting procedures. Participants 11 through 47 also participated in another study

of decision under uncertainty and were recruited based on their knowledge of sporting events.
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Table 1 Parameter estimates obtained from a standard nonlinear least squares regression with a power

value function (vðxÞ ¼ xa) and the linear in log odds weighting function (pðpÞ ¼ dpc

dpcþð1�pÞc). Values in

parentheses are standard errors

Participant Parameter Estimates

a d c R2

1 0.676 (0.097) 0.461 (0.111) 0.392 (0.026) 0.960

2 0.227 (0.058) 1.508 (0.463) 0.651 (0.041) 0.947

3 0.654 (0.120) 1.449 (0.347) 0.388 (0.025) 0.972

4 0.590 (0.054) 0.211 (0.039) 0.154 (0.020) 0.970

5 0.401 (0.083) 1.191 (0.325) 0.273 (0.023) 0.918

6 0.676 (0.058) 1.331 (0.153) 0.890 (0.026) 0.996

7 0.604 (0.060) 0.376 (0.066) 0.204 (0.016) 0.964

8 0.390 (0.069) 0.381 (0.109) 0.373 (0.036) 0.915

9 0.518 (0.076) 0.896 (0.184) 0.863 (0.037) 0.986

10 0.455 (0.090) 0.935 (0.257) 0.501 (0.032) 0.950

11 0.584 (0.147) 1.556 (0.507) 0.595 (0.048) 0.957

12 0.695 (0.104) 0.870 (0.189) 0.493 (0.027) 0.977

13 0.291 (0.059) 1.586 (0.392) 1.554 (0.077) 0.987

14 0.637 (0.177) 0.593 (0.258) 0.360 (0.045) 0.872

15 1.044 (0.112) 0.833 (0.135) 1.047 (0.048) 0.994

16 1.044 (0.174) 0.685 (0.180) 1.249 (0.089) 0.988

17 1.043 (0.141) 0.732 (0.154) 1.042 (0.060) 0.991

18 0.749 (0.237) 0.398 (0.220) 0.193 (0.045) 0.760

19 0.437 (0.074) 1.758 (0.373) 0.276 (0.017) 0.967

20 0.994 (0.143) 0.551 (0.131) 0.666 (0.041) 0.983

21 0.705 (0.124) 0.941 (0.237) 0.558 (0.035) 0.974

22 0.203 (0.064) 2.458 (0.887) 0.838 (0.057) 0.954

23 0.586 (0.125) 0.713 (0.226) 0.515 (0.039) 0.946

24 1.036 (0.013) 0.942 (0.018) 1.006 (0.006) 1.000

25 0.617 (0.192) 1.508 (0.612) 0.546 (0.056) 0.934

26 1.438 (0.313) 0.700 (0.243) 1.068 (0.118) 0.978

27 1.289 (0.215) 0.418 (0.125) 0.899 (0.071) 0.982

28 0.428 (0.194) 1.714 (0.978) 0.632 (0.080) 0.870

29 0.522 (0.109) 1.438 (0.388) 0.282 (0.022) 0.946

30 0.609 (0.093) 0.806 (0.179) 0.530 (0.029) 0.975

31 1.135 (0.294) 0.422 (0.195) 0.824 (0.096) 0.955

32 1.222 (0.282) 0.472 (0.190) 0.858 (0.092) 0.965

33 1.179 (0.410) 0.417 (0.249) 0.127 (0.038) 0.832

34 1.233 (0.590) 1.508 (0.933) 0.320 (0.059) 0.918

35 0.782 (0.106) 1.109 (0.210) 0.705 (0.035) 0.988

36 0.607 (0.135) 1.245 (0.372) 0.510 (0.038) 0.958

37 0.793 (0.131) 0.787 (0.195) 0.558 (0.036) 0.974

38 0.641 (0.183) 1.032 (0.405) 0.197 (0.028) 0.886
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cCEO ¼ v�1 pðpÞvðxÞ þ pðqÞvðyÞ þ pð1 � p� qÞvðzÞð Þ;

where vðxÞ ¼ xâ, pðpÞ ¼ d̂pĉ

d̂pĉþð1�pÞĉ, and â, d̂, and ĉ are the parameter estimates from

Table 1. Similarly, CPT predicts the following cash equivalent:

cCEC ¼ v�1ðpðpÞvðxÞ þ ½pðpþ qÞ � pðpÞ�vðyÞ þ ½1 � pðpþ qÞ�vðzÞÞ:

For each of the 47 participants as well as the median data, we then compare the

predicted CE under both models (using the parameter estimates from the two-

outcome gambles) with the actual CE.

We illustrate this procedure with the prospect, (.50, 400; .40, 200; .10, 0). The

estimates for the median data (from Table 1) are â ¼ :75, d̂ ¼ :87, and ĉ ¼ :70,

yielding CEC=$232 and CEO=$248, compared with the actual median CE is $245.

For this example, CPT under-predicts the cash equivalent, whereas OPT over-

predicts the cash equivalent.

Figure 2 plots the predicted versus actual cash equivalents for both models using

the median data. CPT is plotted in the bottom left panel and OPT is plotted in the

bottom right panel. The pattern found in our illustration generalizes across the

remaining 36 gambles (see Table 2). Both models predict the actual cash

equivalents extremely well. For CPT, the mean absolute deviation (in percentage

terms) between prediction and actual is 6:8% (interquartile range: 2:8% to 8:5%),

compared to 4:3% for OPT (interquartile range: 2:1% to 6:6%) However, estimates

differ from actual cash equivalents in the same systematic way illustrated by the

example: OPT over-predicts 19 of the 37 gambles, and CPT under-predicts 32 of the

37 gambles. A similar finding emerges when we regress the predicted cash

equivalents on the actual cash equivalents (fixing the constant to be zero). The

estimated slopes indicate that CPT slightly under-predicts (bC ¼ :977, p\:001) and

OPT slightly over-predicts (bO ¼ 1:027, p\:001); interaction effect testing

difference of the two slopes is statistically significant (p\:001).

Table 1 continued

Participant Parameter Estimates

a d c R2

39 0.777 (0.109) 0.870 (0.180) 0.717 (0.037) 0.986

40 0.837 (0.168) 1.384 (0.374) 0.860 (0.065) 0.980

41 1.325 (0.205) 0.439 (0.121) 1.188 (0.090) 0.988

42 1.644 (0.295) 0.225 (0.087) 1.026 (0.099) 0.980

43 0.738 (0.084) 1.544 (0.232) 0.693 (0.028) 0.993

44 1.296 (0.541) 0.814 (0.501) 0.298 (0.058) 0.895

45 0.547 (0.092) 0.505 (0.137) 0.227 (0.025) 0.913

46 1.038 (0.139) 0.947 (0.181) 0.345 (0.020) 0.986

47 0.892 (0.246) 0.598 (0.265) 0.803 (0.087) 0.949

Median 0.745 (0.052) 0.869 (0.089) 0.698 (0.018) 0.996
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The relatively good fits at the aggregate level mask the considerable

heterogeneity across types of gambles and participants. Figure 2 distinguishes

between gambles with z ¼ 0 and gambles with z[ 0. For gambles with z ¼ 0, OPT

slightly under-predicts cash equivalents (bO ¼ 0:980, p ¼ :07), whereas CPT

significantly under-predicts cash equivalents (bC ¼ :910; p\:001). In contrast, for

gambles with z[ 0, OPT over-predicts (bO ¼ 1:043; p\:001), whereas CPT is on

average accurate (bC ¼ 0:999, p ¼ 0:85). Thus, for the median data, CPT is more

accurate than OPT for z[ 0 gambles, with OPT more accurate than CPT for z ¼ 0

gambles. We discuss this finding in more detail in the next section.

Fig. 2 The panels show the estimated (a) probability weighting function and (b) value function for the
median data, as well as the predicted cash equivalents under (c) OPT and under (d) CPT. Gambles with
two non-zero outcomes (z ¼ 0) appear in red circles, whereas gambles with three non-zero outcome
(z[ 0) appear in blue squares
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Table 2 Three-outcome gambles, ðp; x; q; y; 1 � p� q; zÞ, used in the study. Cash equivalents for each

gamble are also given, as well as cash equivalents under CPT and OPT, predicted from parameters fitted

on two-outcome gambles

Gambles Median cash CPT OPT

p x q y 1 � p� q z Equivalent Prediction Prediction

0.50 100 0.01 50 0.49 0 39 36 38

0.50 100 0.49 50 0.01 0 71 69 67

0.50 150 0.01 100 0.49 0 67 54 58

0.50 150 0.49 100 0.01 0 121 116 112

0.10 200 0.10 100 0.80 0 27 25 32

0.40 200 0.50 100 0.10 0 126 109 118

0.50 200 0.01 100 0.49 0 78 72 76

0.50 200 0.40 100 0.10 0 134 116 124

0.50 200 0.25 100 0.25 0 114 95 109

0.50 200 0.49 100 0.01 0 142 138 133

0.80 200 0.10 100 0.10 0 146 138 146

0.10 300 0.10 200 0.80 0 51 40 53

0.40 300 0.50 200 0.10 0 201 184 200

0.40 300 0.50 200 0.10 0 213 184 200

0.50 300 0.25 200 0.25 0 183 152 178

0.50 300 0.40 200 0.10 0 219 191 207

0.80 300 0.10 200 0.10 0 243 213 227

0.10 400 0.10 200 0.80 0 54 50 63

0.40 400 0.50 200 0.10 0 226 219 235

0.50 400 0.25 200 0.25 0 200 191 218

0.50 400 0.40 200 0.10 0 245 232 248

0.80 400 0.10 200 0.10 0 298 276 291

0.10 800 0.10 400 0.80 200 280 298 315

0.40 800 0.50 400 0.10 200 499 504 524

0.50 800 0.25 400 0.25 200 499 496 533

0.50 800 0.40 400 0.10 200 530 530 551

0.80 800 0.10 400 0.10 200 609 622 639

0.10 300 0.10 200 0.80 100 142 137 145

0.40 300 0.50 200 0.10 100 226 216 226

0.50 300 0.40 200 0.10 100 226 223 233

0.50 300 0.25 200 0.25 100 214 206 224

0.80 300 0.10 200 0.10 100 250 246 254

0.10 400 0.10 200 0.80 100 149 149 158

0.40 400 0.50 200 0.10 100 259 252 262

0.50 400 0.25 200 0.25 100 271 248 266

0.50 400 0.40 200 0.10 100 271 265 275

0.80 400 0.10 200 0.10 100 313 311 320
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Table 3 Slopes of regression line for zero-intercept regressions (predicted CE vs. observed CE) for

cumulative prospect theory (CPT) and original prospect theory (OPT) for z ¼ 0 gambles and z[ 0

gambles. Supercertain participants (d[ 1) appear in bold font. 	, 		, 			 denote coefficients significantly

below 1 (.05, .01, .001 level). þ, þþ, þþþ denote coefficients significantly greater than 1 (.05, .01, .001

level)

Participant Slope of zero-intercept regressions

All Gambles z ¼ 0 Gambles z[ 0 Gambles

(n ¼ 37) (n ¼ 22) (n ¼ 15)

OPT CPT OPT CPT OPT CPT

1 0:83			 0.93 0:71			 0:60			 0:88	 1.05

2 3:67þþþ 1.06 1:98þþþ 0:72			 4:23þþþ 1:18þþ

3 1:62þþþ 1.00 1:66þþþ 1.06 1:61þþþ 0.98

4 0:41			 0:88			 0.78 0:47			 0:39			 0:89	

5 2:30þþþ 0.99 1:69þþ 0:69			 2:42þþþ 1.05

6 1:15þþþ 0:97			 1:08þþþ 0:93			 1:17þþþ 0:98		

7 0:89			 1.05 0.93 0:58			 0:88			 1:12þþ

8 0:45			 0:87	 0:37			 0:31			 0:46			 0.96

9 0.99 1.00 1:20þþ 1:19þþ 0.96 0.97

10 1:33þþþ 0.97 1.11 0:76			 1:39þþþ 1.03

11 1:55þþþ 0.99 1:29þþþ 0:88			 1:65þþþ 1.03

12 1:09þþþ 0:92			 1:06þ 0:85			 1:10þþ 0:94		

13 1:26þþþ 1.04 1:34þþþ 1:12þ 1:24þþ 1.02

14 1:10þ 1.04 0.96 0:73			 1:15þ 1:14þ

15 0.98 1.03 0.97 1.02 0.98 1.04

16 0:93		 1:07þþ 0.93 1.06 0.94 1:08þþ

17 0:82			 :89			 0:82			 0:89			 0:82			 0:90		

18 0.88 0.92 0:71	 0:49			 0.93 1.03

19 2:71þþþ 0.97 1:80þþþ 0:70			 3:06þþþ 1.06

20 0:87			 0:95	 0:89		 0:92	 0:86			 0.96

21 1:09þþþ 0:93		 0:96	 0:79			 1:14þþþ 0.98

22 6:89þþþ 0.99 3:61þþþ 0:80			 7:98þþþ 1:05þþ

23 0:93	 0:87			 0:73			 0:61			 1.02 0.99

24 0:98			 0:99			 0:98			 1.00 0:98			 0:99		

25 1:48þþþ 0:96		 1:30þþþ 0:88			 1:54þþþ 0.98

26 0:89			 0.94 1.00 1.06 0:86		 0.91

27 0:75			 0:88			 0:75			 0:86			 0:75			 0:88			

28 1:96þþþ 0.97 1:52þþþ 0:85			 2:10þþþ 1.01

29 2:00þþþ 0.97 1:61þþþ 0:80			 2:11þþþ 1.02

30 0.97 0:86			 0:89	 0:73			 1.00 0:90		

31 0:63			 0:76			 0:68			 0:79			 0:62			 0.75			

32 0:80			 0:92		 0:80			 0:89			 0:80			 0.93

33 0:87		 0:80			 0:78	 0:61			 0:91	 0.87			

34 1:21þþþ 0.98 1.14 0.92 1:24þþþ 1.00
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We next turn to individual-level analysis of the 47 participants. Table 3 reports

the degree of over- or under-prediction for each participant for the entire set of 37

gambles, as well as separately for the 22 z ¼ 0 gambles and the 15 z[ 0 gambles.

(Plots for each of the 47 participants are found in the Appendix, Figs. 7 and 8.) We

find the same general pattern observed for the median data at the level of

individuals. CPT under-predicts cash equivalents ðbC\1) for 36 of 47 participants

(sign test, p\:01), whereas OPT over-predicts cash equivalents (bO [ 1Þ for 24 of

47 participants (sign test, n.s.). We also find that CPT under-predicts cash

equivalents for 40 of 47 participants (sign test, p\:001) for the z ¼ 0 gambles but

only 27 of 47 participants for the z[ 0 gambles (sign test, n.s.). OPT under-predicts

cash equivalents for 23 of the 47 participants for the z ¼ 0 gambles (sign test, n.s.).

and over-predicts cash equivalents for 27 of the 47 participants for the z[ 0

gambles (sign test, p ¼ :047). OPT shows considerably more variation in the degree

of over- or under-prediction than CPT (e.g., the interquartile range for bO is .868 to

1.439, compared to .894 to 1.000 for bC).

To understand what may be driving differences across individuals, in Fig. 3, we

plot the b-coefficients for each individual (Table 2) and each model against the

individual-level parameter estimates, d̂, ĉ, and â (Table 1). The top panel shows a

strong positive relationship between d̂ and the b-coefficients for OPT (q ¼ :76,

p\:001), leading to over-prediction (bO [ 1) for all 17 subjects with d̂[ 1. These

Table 3 continued

Participant Slope of zero-intercept regressions

All Gambles z ¼ 0 Gambles z[ 0 Gambles

(n ¼ 37) (n ¼ 22) (n ¼ 15)

OPT CPT OPT CPT OPT CPT

35 1:20þþþ 1:04þþþ 1:14þþþ 1.00 1:22þþþ 1:05þþþ

36 1:62þþþ 1:12þþ 1:36þþþ 0.95 1:72þþþ 1:18þþ

37 1:22þþþ 1:14þþþ 1:15þ 1.01 1:25þþþ 1:18þþþ

38 1:48þþþ 0:90			 1:22þþþ 0:68			 1:56þþþ 0.98

39 1.01 0.97 1.04 0.98 1.00 0.97

40 1:23þþþ 1.06 1.08 0.95 1:30þþþ 1:11þ

41 0:80			 0:96		 0:78			 0:93		 0:81			 0.97

42 0:67			 0:84			 0:68			 0:84			 0:67			 0.84			

43 1:44þþþ 1:08þþþ 1:26þþþ 0.99 1:51þþþ 1:12þþþ

44 1.00 0:88			 0.96 0:82			 1.01 0:90	

45 0:83			 0:79			 0:65			 0:39			 0.88 0.91

46 1:10þþþ 0:91			 1.04 0:83			 1:12þþ 0:94	

47 0:77			 0:87			 0:74			 0:81			 0:78			 0:90			

Median 1:03þþþ 0:98		 0.98 0:91			 1:04þþþ 1.00
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participants have supercertain weighting functions, i.e., pðpÞ þ pð1 � pÞ[ 1,

resulting in gambles for which OPT is fits poorly. To illustrate, consider the

prospect (.50, 200; .40, 100; .10, 0). Subject 2 has a supercertain weighting

function with d̂ ¼ 1:51 (and ĉ ¼ :65 and â ¼ :23). These estimates yield

pð:5Þ þ pð:4Þ ¼ 1:14, and hence, a predicted cash equivalent of 257 that exceeds

Fig. 3 The panels plot the relation between the degree of under-prediction and over-prediction for CPT

and OPT (bC and bO) and the prospect theory parameter estimates (d̂, ĉ, and â). Color refers to whether
d� 1 (green) or d[ 1 (orange). Participant 22 (d ¼ 2:45 and bO ¼ 6:89) is an outlier and is omitted from
the figure, but included in the analyses in the text
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the highest outcome 200, violating a standard condition that a CE of a gamble

cannot exceed its most extreme outcomes. Note that we also see a significant

negative correlation between â and bO (q ¼ �0:50, p\:001). However, since a and

d are highly correlated, q ¼ �:51, we conduct a multiple regression (see below) to

analyze the effect of all parameters simultaneously.

We also find a smaller, but still significant, positive correlation between d̂ and bC
for CPT (q ¼ :48, p\:001), and a modest, but significant, negative correlation

between â and bC (q ¼ �0:30, p ¼ :04). To understand the independent effect of

parameters on over- and under-prediction, we perform a multiple regression,

regressing bC and bO on â, d̂, and ĉ. The regressions are found in Table 4, for the

whole set of 37 gambles and separately for the z ¼ 0 and z[ 0 gambles. The

regressions show a continued positive relationship between d̂ and bO for OPT, while

also indicating no relationship between â and bO, after controlling for d̂,

Recall that CPT is on average accurate for the z[ 0 gambles, with OPT accurate

for gambles with z ¼ 0. When z[ 0 and CPT is most accurate, there is no

significant relationship between the individual parameter estimates and the degree

of over- or under-prediction for CPT. In contrast, for the z ¼ 0 gambles, where OPT

is most accurate, we find a significant relationship between all the parameters and

bC. To understand this relationship, suppose that an individual satisfies OPT for

gambles with z ¼ 0 and that this individual has a relatively low ĉ ¼ :5. For the

gamble (.5, 200; .40, 100; .10, 0), OPT, which is the correct model by assumption,

gives the middle outcome 100 a decision weight of pð:4Þ ¼ :32, whereas the

decision weight under CPT is pð:9Þ � pð:5Þ ¼ :24. Thus, CPT will tend to under-

predict the cash equivalents most when ĉ is low and least when ĉ is close to 1.

Finally, we examine whether decision weights are rank-dependent, as required by

CPT, or rank-independent, as required by OPT. To do so, we examine the 22 3-

outcome gambles, ðp; x; q; y; 1 � p� q; 0Þ in which z ¼ 0. Consider the middle

outcome y. We denote the decision weight for that outcome w(q; p). OPT assigns a

decision weight of pðqÞ to y, while CPT assigns a decision weight of pðpþ qÞ �
pðpÞ to the same outcome. If pð�Þ satisfies lower subadditivity, then a middle

outcome with probability q will have a lower decision weight than a best outcome

Table 4 Regression coefficients (dependent variables, bC and bO). 	, 		, 			 denote coefficients signifi-

cantly different from 0 (.05, .01, .001 level)

Predictor Coefficients

All Gambles z ¼ 0 Gambles z[ 0 Gambles

(n ¼ 37) (n ¼ 22) (n ¼ 15)

OPT CPT OPT CPT OPT CPT

a -0.42 -0.05 -0.14 -0.22** -0.52 -0.10

d 1.41*** 0.06* 0.81*** 0.20*** 1.60*** 0.05

c -0.08 0.07 -0.03 0.30*** -0.09 0.00

Constant 0.36 0.91 0.47 0.28 0.33 1.03

R2 0.59 0.29 0.72 0.64 0.56 0.30
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with probability q. In other words, CPT, with a typical probability weighting

function, requires that extreme outcomes receive the greatest weight, holding

probabilities constant (Fennema and Wakker 1997).

We use the estimates obtained from two-outcome gambles to infer a decision

weight for the middle outcome y. We again illustrate this procedure with the

prospect (.50, 400; .40, 200; .10, 0), which has a median CE of $245. The decision

weight for the middle outcome, 200, is wð:40; :50Þ ¼ vðCEÞ�pð:50Þvð400Þ
vð200Þ (which we call

the implied decision weight). Under OPT, wð:40; :50Þ ¼ pð:40Þ, while wð:40; :50Þ ¼
pð:90Þ � pð:50Þ for CPT. For the parameter estimates for the median data, â ¼ :75,

d̂ ¼ :87, and ĉ ¼ :70, we can compute three estimates for the decision weight of the

middle outcome: the implied decision weight wð:40; :50Þ ¼ :382, the estimate of the

OPT decision weight pð:4Þ ¼ :396, and the estimate of the CPT decision weight

pð:90Þ � pð:50Þ ¼ :336. For this gamble, the decision weight exhibits modest rank

dependence, wð:40; :50Þ\pð:40Þ, but not as much as required by CPT,

wð:40; :50Þ ¼ pð:90Þ � pð:50Þ.
We infer decision weights for the middle outcome for the remaining 21 3-

outcome gambles with z ¼ 0.7 The results are shown in Fig. 4, with the same plot

for each of the 47 participants found in the Appendix Fig. 9. The inferred decision

weights are always above those implied by CPT (sign test, p\:001), but also above

those implied by OPT in 16 of 22 cases (sign test, p ¼ :033), a result inconsistent

with rank-dependent decision weights and contrary to the findings of Diecidue et al.

(2007) and roughly consistent with the findings of Bernheim and Sprenger (2020).

4 Discussion

Of the three components of choice models—value function, probability weighting

function, and composition rules—composition rules have received the least

empirical attention. The empirical contest to date between OPT and CPT, the two

most widely studied ‘‘nonlinear in probability’’ models, has been mixed. In this

paper, we take a different approach than previous researchers. We estimate

parameter values on two-outcome gambles, where the models coincide, and then use

these parametric estimates on a holdout sample of three-outcome gambles. We find

that both models predict the median data extremely well. However, CPT slightly but

systematically underestimates and OPT slightly but systematically overestimates

three-outcome gamble cash equivalents. We document similar results using

Bayesian hierarchical methods (e.g., Murphy and ten Brincke 2018; Nilsson et al.

2011) and when we employ heterogeneous error terms in a nonlinear mixed model

regression (see Supplementary Information).

Our aggregate level findings mask the considerable heterogeneity at the level of

types of gambles and individual subjects. Our analyses showed that OPT overvalues

cash equivalents relative to CPT. However, we also found that OPT was on average

accurate for three-outcome gambles in which the lowest outcome is 0, whereas CPT

was accurate when the worst outcome is positive.

7 We are unable to infer the decision weight for the middle outcome when z[ 0.
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We offer a speculative hypothesis for this pattern: the lowest outcome frames

how the middle outcome is viewed and hence how much weight is given to that

outcome. When the lowest outcome is 0, the middle outcome is seen as one of the

two positive outcomes that might result from this gamble—‘‘If I win something, it

will either be x or y.’’ In this case, neither of the two outcomes (x or y) appears to

receive any precedence, consistent with the treatment under OPT. On the other

hand, when the lowest outcome is positive, then the evaluation of this gamble might

differ considerably. The decision-maker might code this gamble in the following

way—‘‘I am going to win something. I could win as much as x or as little at z.’’
Under this coding, the middle outcome, y, will likely receive less weight, being

viewed as ‘‘marginal’’ relative to the best and worst outcome. Of course, this

psychological process is naturally approximated by the rank-dependent composition

rule used by CPT.8

Earlier, we discussed some psychological features of the two composition rules.

CPT has the attractive feature of generalizing diminishing sensitivity from

probabilities to outcomes, whereas OPT has the feature that outcomes that are

distinctive from others receive more weight because of the subadditivity of pð�Þ. Our

Fig. 4 Implied decision weights for middle outcome (y) for 22 3-outcome gambles with z ¼ 0 for the
median data. The tests are sorted by combinations of q, the probability of the middle outcome, and p, the
probability of the highest outcome. For example, ‘‘.01 (.50)’’ bins the three tests in which q ¼ :01 and
p ¼ :50. Red triangles denote implied decision weights calculated from estimated probability weighting
and value function parameters. ‘‘C’’ and ‘‘O’’ indicate decision weights assuming CPT and OPT,
respectively

8 Incekara-Hafalir, Kim, & Stecher (2020) offer an alternative account, that individuals dislike receiving

nothing. They replicate the Allais Paradox when the worst outcome for one of the gambles is $0, but find

no certainty effect when the worst outcome is small but positive.
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speculative hypothesis points to a constructive decision process in the tradition of

Payne et al. (1993). It is possible that neither composition rule captures the decision-

making process used by subjects for all gambles, but that both composition rules

might approximate the process used to evaluate particular types of gambles. We

suggest that researchers might consider the relation between psychological

processes and algebraic models (e.g., Brandstatter et al. 2006; Johnson et al.,
2006). Researchers might start with attention. Decision weights can be thought of as

capturing the amount of attention devoted to each outcome. Such an interpretation

of decision weights is not new. Many researchers including Lopes and Oden (1999),

Wakker (1990), and Weber (1994) have offered motivational accounts of decision

weights as capturing the balance between security and potential, optimism and

pessimism, and asymmetric loss functions. We suggest, in addition, that there may

be a cognitive explanation involving attention. How a gamble is presented to the

respondent may influence how much attention each outcome garners. For example,

attention to middle outcomes might differ if a distributional presentation such as

that used by Lopes and Oden (1999) is used rather than a verbal presentation such as

that used in Tversky and Kahneman (1992) or if the worst outcome is non-zero, as

in our study. Mouselab and other process tracing techniques offer promising ways of

studying attention by measuring how long and often subjects attend to particular

outcomes and probabilities (Costa-Gomes et al. 2001; Johnson et al. 2002; Payne

et al. 1993; Schulte-Mecklenbeck et al. 2019, 2017; see Murphy and ten Brincke

2018, for an example based on prospect theory).

Economists have been increasingly interested in fitting non-expected utility

choice models to real-world data such as behavior from asset, insurance, and race

track markets (e.g., Barberis 2013; Barberis and Huang 2008; Barseghyan et al.

2013; Camerer 2000; Chiappori et al. 2019; Dimmock et al. 2021; Gurevich et al.

2009; Jullien and Salanie 2000). The primary concern is whether these models

organize empirical regularities better than the classical expected utility models.

Although our analysis suggests that neither composition rule, CPT or OPT, works

perfectly, goodness-of-fit measures indicate that both models do well in explaining

three-outcome cash equivalent data and also explain three-outcome data signifi-

cantly better than expected utility. Pragmatically, there are additional reasons to

prefer CPT as a choice model for applications. Our investigations indicate that CPT

is more robust to heterogeneity in individual preferences, or, more specifically, well

behaved for individuals with both subcertain and supercertain probability weighting

functions. In addition, it is parsimonious (aggregate data are explained well using

only one more parameter than expected utility, Gonzalez and Wu 1999), relatively

tractable (using CPT is like using EU with transformed probabilities, however some

equilibrium proofs can be rather difficult with transformed probabilities), and

generalizes naturally from discrete to continuous probability distributions.

Appendix

See below Table 5 and Figs. 5, 6, 7, 8 and 9.
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Table 5 Median cash equivalents for 165 two-outcome gambles

Outcomes Probability attached to higher outcome

0.01 0.05 0.10 0.25 0.40 0.50 0.60 0.75 0.90 0.95 0.99

25-0 4 5 7 10 10 12 13 16 18 19 23

50-0 6 7 10 15 19 24 24 31 40 42 47

75-0 7 9 11 21 26 24 34 44 54 62 68

100-0 10 10 13 25 31 39 49 61 75 85 94

150-0 10 10 19 37 52 58 73 100 121 127 139

200-0 9 18 26 50 66 74 78 122 146 178 189

400-0 18 26 42 74 123 147 171 217 318 344 380

800-0 17 51 69 113 250 300 323 396 642 642 763

50-25 29 30 31 32 35 36 39 40 41 44 46

75-50 56 57 59 60 61 63 65 66 68 68 69

100-50 56 58 60 63 69 74 76 81 87 94 97

150-50 57 63 67 75 89 99 103 109 135 135 141

150-100 110 113 114 117 122 126 129 135 140 142 145

200-100 110 113 117 123 139 149 159 171 181 175 189

200-150 156 163 160 165 169 174 179 179 190 190 194
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Fig. 5 Probability weighting function estimated for each of the 47 participants
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Fig. 6 Value function estimated for each of the 47 participants
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Fig. 7 Predicted cash equivalents under OPT for each of the 47 participants. Gambles with two non-zero
outcomes (z ¼ 0) appear in red circles, whereas gambles with three non-zero outcome (z[ 0) appear in
blue squares
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Fig. 8 Predicted cash equivalents under CPT for each of the 47 participants. Gambles with two non-zero
outcomes (z ¼ 0) appear in red circles, whereas gambles with three non-zero outcome (z[ 0) appear in
blue squares
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Supplementary Information The online version contains supplementary material available at https://doi.
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Fig. 9 Implied decision weights for middle outcome (y) for 22 3-outcome gambles with z ¼ 0 for each of
the 47 participants. Red triangles denote implied decision weights calculated from estimated probability
weighting and value function parameters. ‘‘C’’ and ‘‘O’’ indicate decision weights assuming CPT and
OPT, respectively
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