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In most real-world decisions, consequences are tied explicitly to the outcome of events.
Previous studies of decision making under uncertainty have indicated that the psycholog-

ical weight attached to an event, called a decision weight, usually differs from the probability
of that event. We investigate two sources of nonlinearity of decision weights: subadditivity of
probability judgments, and the overweighting of small probabilities and underweighting of
medium and large probabilities. These two sources of nonlinearity are combined into a
two-stage model of choice under uncertainty. In the first stage, events are taken into subjective
probability judgments, and the second stage takes probability judgments into decision
weights. We then characterize the curvature of the decision weights by extending a condition
employed by Wu and Gonzalez (1996) in the domain of risk to the domain of uncertainty and
show that the nonlinearity of decision weights can be decomposed into subadditivity of
probability judgments and the curvature of the probability weighting function. Empirical tests
support the proposed two-stage model and indicate that decision weights are concave then
convex. More specifically, our results lend support for a new property of subjective
probability judgments, interior additivity (subadditive at the boundaries, but additive away
from the boundaries), and show that the probability weighting function is inverse S-shaped as
in Wu and Gonzalez (1996).
(Decision Making under Uncertainty; Prospect Theory; Decision Weights; Support Theory)

1. Introduction
Making decisions in the face of uncertainty is an
important part of a manager’s life. For instance,
decisions whether to add capacity to an existing
facility, introduce a new product, and hire a new
employee are made difficult largely because future
costs, demand, and productivity are not known with
certainty. Subjective expected utility (SEU; Savage
1954) is regarded by most decision analysts to be the
normative model for how individuals should make
decisions under uncertainty (Howard 1992). Indi-
viduals, however, violate SEU, as was first and most
famously illustrated by the Ellsberg Paradox (Ells-
berg 1961; see Camerer and Weber 1992, Heath and
Tversky 1991, and Fox and Tversky 1995). Beyond

Ellsberg, a more general empirical characterization
of decision under uncertainty has been lacking.
Most empirical research has considered decision
under risk. Research on risk has in turn been
criticized: textbook gambles do not resemble real
world decision alternatives, and hence gambles are
often viewed as insufficiently rich to provide a
complete picture of decision making.

While this view has some merit, we propose that
decision under uncertainty resembles decision under
risk with one important qualification. We illustrate
our point with a new violation of the SEU model that
uses a device we call a preference ladder. The pros-
pects were presented to University of Chicago under-
graduates as a between-subjects test. Each prospect is
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tied to the high temperature (degrees Fahrenheit) in
Chicago on Thanksgiving Day, 1996 (we denote this
temperature by T). For example, R 2 offers $140 if

25 , T # 30, $100 if 30 , T # 40, and $0 otherwise.
For each question i, 75 respondents chose between R i

and S i.

Question % Choice z-Statistic T # 25 25 , T # 30 30 , T # 40 40 , T # 50 50 , T # 60 60 , T
1 R 1 19 0 140 0 0 0 0

S 1 81 100 100 0 0 0 0
4.73

2 R 2 56 0 140 100 0 0 0
S 2 44 100 100 100 0 0 0

0.50
3 R 3 60 0 140 100 100 0 0

S 3 40 100 100 100 100 0 0
21.47

4 R 4 48 0 140 100 100 100 0
S 4 52 100 100 100 100 100 0

23.25
5 R 5 23 0 140 100 100 100 100

S 5 77 100 100 100 100 100 100

Note that the prospects in one question are created
from the prospects in the previous question by replac-
ing $0 in a particular state with $100. Moving down
the “ladder” from question 1 to question 5, the per-
centage of subjects choosing the risky (R) option
increases and then decreases, creating an inverted
U-shaped pattern of responses. This pattern is incon-
sistent with SEU maximization and the Sure Thing
Principle, which require that the percentage of sub-
jects choosing the risky option remain constant across
the ladder.1 In contrast, our respondents made differ-
ent choices in questions 1 and 2 ( p , 0.0001),
questions 3 and 4 ( p 5 0.07), and questions 4 and 5
( p , 0.001).

Recall that question 2 is created from question 1 by
replacing $0 in the event “30 , T # 40” with $100.
Although this shift in probability mass improves both
R 2 and S 2 equally in objective terms, the choice data
suggest that R 2 benefits more from the probability
shift in subjective terms. Consider two possible expla-
nations for this effect. First, the subjective probability

assigned to the event “30 , T # 40”, r(30 , T # 40),
might exceed the increase in probability from adding
the same event to “T # 30”, r(T # 40) 2 r(T # 30).
This explanation is consistent with recent demon-
strations of subadditive probability judgments: r( A)
$ r( A ø B) 2 r(B) (Tversky and Koehler 1994,
Tversky and Fox 1995, Fox et al. 1996, Rottenstreich
and Tversky 1997). Second, an individual may assign
additive probabilities but fail to weight these proba-
bilities linearly. For example, an individual may assess
the following additive probabilities, r(25 , T # 30)
5 r(30 , T # 40) 5 0.1, r(T # 30) 5 0.2, and
r(T # 40) 5 0.3, but could weight the 0.1 probability
of the event “30 , T # 40” more when it is added to
the 0.1 probability of “30 , T # 40” (in R 2) than
when it is added to the 0.2 probability of “T # 30” (in
S 2). This story is suggested by several studies on
decision under risk that show a tendency to over-
weight small objective probabilities and underweight
medium and large objective probabilities (Tversky
and Kahneman 1992, Camerer and Ho 1994, Tversky
and Fox 1995, Wu and Gonzalez 1996, Gonzalez and
Wu in press; for an exception, see Birnbaum and
McIntosh 1996). Such a pattern can be captured with

1 For related violations of SEU, see Tversky and Kahneman (1992),
Tversky and Fox (1995), and Fox and Tversky (1998), as well as
Camerer’s (1995) review of decision making.
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an inverse S-shaped probability weighting function as
originally proposed by Tversky and Kahneman (1992).

The two factors, subadditive probability judgments
and an inverse S-shaped probability weighting func-
tion, can be accommodated within prospect theory
(Kahneman and Tversky 1979, Tversky and Kahne-
man 1992) by a nonlinear decision weighting function. In
this paper, we characterize the decision weighting
function as a composition of two functions: a function
that maps events into subjective probability judg-
ments and a probability weighting function that maps
the judged probabilities to decision weights. We
present a condition that characterizes nonlinearity of
the decision weighting function. In empirical tests of
the condition, we observe an inverted U-shaped pat-
tern (as in the Chicago temperature example), a pat-
tern predicted by a decision weighting function that is
concave for low probability events and convex for
medium to high probability events.

The condition also allows us to tease apart the
possible sources of nonlinearity of the decision
weighting function, i.e., whether the nonlinearity is
due to subadditivity of probability judgments or non-
linearity of the probability weighting function. It is
important for decision analysts to understand which
of the two factors is producing the pattern exhibited in
the example above. If failure to obey the axioms of
probability is the culprit, then the decision analyst
should concentrate on ensuring additivity of probabil-
ity judgments. On the other hand, if the failure is
attributable to the curvature of the probability weight-
ing function, then eliciting utilities using standard
procedures (e.g., the certainty equivalent method) will
be problematic (Hershey and Schoemaker 1985). In
this case, the decision analyst might then wish to
consider alternative methods for eliciting utilities such
as the tradeoff method (Wakker and Deneffe 1996).

The paper is structured as follows. In §2, we present
a two-stage model for decision making under uncer-
tainty. The two-stage model maps (1) events into
judged probabilities through a nonadditive subjective
probability measure, and (2) judged probabilities into
decision weights through a probability weighting
function. The composition of these two stages pro-
duces the decision weighting function. We present

conditions for concavity and convexity of the decision
weighting function and describe the implications of
these conditions for the two-stage model. In §§3 and 4,
we present two empirical studies (one choice and one
cash equivalence) designed to test for nonlinearity of
the decision weighting function. In §5, we make some
concluding remarks.

2. Framework
2.1. Preliminaries
Tversky and Fox (1995) proposed a two-stage theory
for decision making under uncertainty. Their model
considered only simple prospects, prospects with at
most two possible outcomes. For a reason that will
become clear in §2.3, we must extend their model to
three-outcome prospects. We characterize non-SEU
behavior in terms of nonlinearity of decision weights,
a feature of a family of nonexpected utility theories
that includes rank-dependent expected utility (Quig-
gin 1982) and cumulative prospect theory (Tversky
and Kahneman 1992, Starmer and Sugden 1989, Luce
and Fishburn 1991).

We consider three-outcome prospects in which pos-
sible outcomes are x . y . 0. Let S be an event space
endowed with an algebra A. Let E i be a subset of S
and A be the null set. We denote S 2 E i as the disjoint
complement of E i, i.e., both E i ø (S 2 E i) 5 S and E i

ù (S 2 E i) 5 A. Furthermore, let E ij 5 E i ø E j, E ijk

5 E i ø E j ø E k, and E i, . . . , j 5 ø k5i
j E k. We denote a

prospect in which x is received if E i obtains, y is
received if E j obtains, and 0 is received if S 2 E i 2 E j

obtains, ( x, E i; y, E j) where E i and E j are disjoint.
Unless otherwise noted, we assume that E i and E j are
disjoint.

We assume that a prospect ( x, E i; y, E j) is valued
according to the following representation, which is
separable in events and outcomes:

U~x, Ei; y, Ej! 5 v~Ei!v~x! 1 @v~Eij! 2 v~Ei!#v~y!.

(2.1)

The representation consists of two scales, v[, a value
function, and v[, a decision weighting function or
capacity (Gilboa 1987, Schmeidler 1989, Wakker 1989).
(Since v[ is unique up to an affine transformation, we
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have set v(0) 5 0.) The capacity v[ satisfies mono-
tonicity with respect to set inclusion (v(E i) # v(E ij)
for all i, j), as well as the restrictions v(A) 5 0 and
v(S) 5 1. It is important to note that v[ does not
necessarily satisfy additivity: v(E ij) 2 v(E i) Þ v(E j)
for disjoint E i, E j. Finally, the decision impact of E j

when the event is added to E i is given by
v(E ij) 2 v(E i).

2.2. The Two-Stage Model
As we noted in the introduction, nonlinearity of
decision weights can be a result of subadditivity of
probability judgments, curvature of the probability
weighting function, or both. We describe a two-stage
model in which (1) events are first mapped into
judged probabilities; and (2) judged probabilities are
mapped into decision weights. Stage (i) is captured by
r: A 3 [0, 1], where r is a nonadditive subjective
probability measure. We assume that r[ is a support
function, i.e., is consistent with Tversky and Koehler’s
(1994) support theory. More specifically, r[ is subad-
ditive (r(E i) 1 r(E j) $ r(E ij) for E i, E j disjoint) and
satisfies binary complementarity (r(E i) 1 r(S 2 E i) 5 1
for all E i). A more restrictive condition on r[ is
interior additivity: r[ is interior additive if r(E ij) 2 r(E j)
5 r(E ijk) 2 r(E jk) for all disjoint E i, E j, E k such that
r(E j) . 0 and r(E ijk) , 1. Interior additivity requires
that subadditivity be driven exclusively by the cate-
gorical difference between shifting from “impossibil-
ity” to “possibility” and from “near certainty” to
“certainty.” Note that if r[ is subadditive and interior
additive, then the “direct” probability of E i will typi-
cally exceed the “revealed” probability of E i: r(E i)
. r(E ij) 2 r(E j). Interior additivity will prove to be a
crucial concept in teasing apart the sources of nonlin-
ear decision weights.

Stage (ii) is modeled by p:[0, 1]3 [0, 1], a probability
weighting function that is nondecreasing, with p(0) 5 0
and p(1) 5 1.

The two-stage model follows below.

Two-stage Model: A prospect, ( x, E i; y, E j), is evaluated by
(2.1), where v(E i) 5 p(r(E i)), where r[ is a support
function and p[ is a probability weighting function.

Our two-stage model is rank-dependent in the sense
that the weight assigned to an outcome depends on
where that outcome is ranked vis-a-vis the other

outcomes. Note that our two-stage model extends
Tversky and Fox’s two-stage theory to multiple out-
comes.2

2.3. Concavity and Convexity of the Decision
Weighting Function

We begin by defining concavity and convexity of the
decision weighting function v[. The function v[ is
concave if v(E ij) 2 v(E j) $ v(E ijk) 2 v(E jk) for all E k.
Likewise, v[ is convex if v(E ij) 2 v(E j) # v(E ijk)
2 v(E jk) for all E k. Concavity of v[ captures the
diminishing impact of E i: E i has a smaller and smaller
impact as it is added to more inclusive events. Con-
vexity, of course, has the opposite interpretation.

Our formulation of a concavity (convexity) condi-
tion for decision making under uncertainty extends
the following risky choice condition tested in Wu and
Gonzalez (1996):

if R 5 ~x, p; y, q! , ~y, p 1 q 1 e! 5 S,

then R’ 5 ~x, p; y, q 1 q9! f ~ d !

~y, p 1 q 1 q9 1 e! 5 S9. (2.2)

Note that the second pair of gambles is constructed by
adding q9 chance at y to both R and S. Under
rank-dependent expected utility or cumulative pros-
pect theory, (2.2) implies

p~p 1 q 1 q9! 2 p~p 1 q!

$ ~#!p~p 1 q 1 q9 1 e! 2 p~p 1 q 1 e!,

which holds if p[ is concave (convex). In an empirical
test of (2.2), Wu and Gonzalez (1996) found that the
number of subjects who chose the risky option in-
creased and then decreased as q9 increased, a pattern
consistent with an inverse S-shaped probability
weighting function.3

There are three noteworthy features of conditions

2 Tversky and Fox suggested that the value for a simple prospect
( x, E) is given by p(r(E))v( x). The generalization of (2.1) to
multiple-outcome prospects, ( x 1, E 1; . . . ; x i, E i; . . . ; x n, E n), where
x i . x i11, is v(E 1)v( x 1) 1 . . . 1 [v(E 1 . . . i) 2 v(E 1 . . . i21)]v( x i)
1 . . . 1 [1 2 v(E 1 . . . n21)]v( x n).
3 For related “common consequence” conditions, see Segal (1987),
Tversky and Wakker (1995), Wu and Gonzalez (1998). See also
Prelec (1998).
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(2.2). First, the conditions are nonparametric in the
following sense: inferences about p[ do not depend
on assumptions about the value function. Second, the
conditions involve two nonzero outcomes, x and y,
and thus solve the indeterminacy problem: when
simple prospects with one nonzero outcome are used,
the value and weighting function are determined only
to a power (if p( p)v( x) represents preferences, so
does p( p) lv( x) l). Finally, because the conditions are
identical except for the sign of the inequality, we can
test for both concavity and convexity simultaneously.

The following two conditions extend (2.2) to deci-
sion making under uncertainty, while also inheriting
the three aforementioned features (see Wakker 1996
for a more comprehensive treatment):

Concavity Condition:

If R 5 ~x, Ej; y, Ek! , ~y, Eijk! 5 S

then R9 5 ~x, Ej; y, Ekl! f ~y, Eijkl! 5 S9.
(2.3)

Convexity Condition:

If R 5 ~x, Ej; y, Ek! , ~y, Eijk! 5 S then R9

5 ~x, Ej; y, Ekl! d ~y, Eijkl! 5 S9. (2.4)

If changing the outcome attached to E l from 0 to y
improves the risky alternative (R) more than it im-
proves the safe alternative (S), then preferences are
consistent with the Concavity Condition. Preferences
are consistent with the Convexity Condition if the
same change improves S more than R. Note that the
Sure Thing Principle of SEU implies that R f S N R9
f S9.

3. Study 1: Binary Choice
In the next two sections, we describe two empirical
studies. The first study is a direct between-subject test
of the concavity/convexity conditions using choice
questions. The second study tests the conditions using
a within-subject cash equivalence design. We also test
for properties of r[ such as subadditivity, binary
complementarity, and interior additivity.

3.1. Procedure
We recruited 420 University of Washington under-
graduates to complete a questionnaire of approxi-

mately 25 choice questions. Subjects were paid $5 for
completing the questionnaire. The questionnaires con-
sisted mostly of risky choice questions. However, each
questionnaire contained either two or four uncertainty
questions. Table 1 lists the questions, labeling the
events to match the convention of the concavity/
convexity conditions (i 5 1, j 5 2, etc.). We refer to
the group of related questions (e.g., the three Seattle
temperature questions, 1.1, 1.2, and 1.3) as a ladder
and questions within a given ladder as rungs. Note
that questions within a ladder differ only by a com-
mon consequence. For example, $0 in the event “50
, T # 60” in question 1.1 is replaced by $100 in
question 1.2.

The sources of uncertainty included the high tem-
perature in Seattle on a specific day, the number of
football victories by the University of Washington
football team for the 1995–1996 season, the 1996 U.S.
national election, and the close of the Dow Jones
Industrial average on a particular day. Ladder 2
involved conjunctions and disjunctions of four primi-
tive events, DP (RP), “A Democrat (Republican) wins
the Presidential election” and DH (RH), “The Demo-
cratic (Republican) Party gains control of the House of
Representatives.” For example, E 2 was described as
“A Democrat wins the Presidential election and The
Democratic Party gains control of the House of Rep-
resentatives,” whereas E 123 was described as “A Dem-
ocrat wins the Presidential election or The Democratic
Party gains control of the House of Representatives.”

All critical comparisons were between-subject. A
total of 70 subjects answered each question (1.1, 1.2,
etc.). There were two groups of subjects. Each member
of the first group was given one question from each of
ladders 1 and 2, while members of the second group
were given one question from each of ladders 3–6. All
prospects were displayed in a simplified form. For
example, R 2 in Question 1.2 was described as

$200, if 45 , T # 50
A $100, if 50 , T # 60

$0, otherwise.

Finally, the questions were counter-balanced so that
the risky option (i.e., the R prospect) was the first
choice on the sheet half of the time. In addition, the
order of the events (e.g., Seattle temperature, election
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Table 1 Choice Questions for Study 1

Ladder 1

Question % Choice z-Statistic
E 1

40 , T # 45
E 2

45 , T # 50
E 3

50 , T # 60
E 4

T # 40 ø 60 , T

1.1 R 1 54 0 200 0 0
S 1 46 100 100 0 0

3.04*
1.2 R 2 79 0 200 100 0

S 2 21 100 100 100 0
6.86*

1.3 R 3 21 0 200 100 100
S 3 79 100 100 100 100

T 5 high temperature of Seattle on December 25, 1994.

Ladder 2

Question % Choice z-Statistic
E 1

DP ù RH
E 2

DP ù DH
E 3

ERP ù DH
E 4

RP ù RH

2.1 R 1 35 0 350 0 0
S 1 65 300 300 0 0

3.68*
2.2 R 2 67 0 350 300 0

S 2 33 300 300 300 0
6.49*

2.3 R 3 13 0 350 300 300
S 3 87 300 300 300 300

DP 5 A Democrat wins the Presidential election.
RP 5 A Republican wins the Presidential election.
DH 5 The Democratic Party gains control of the House of Representatives.
RH 5 The Republican Party gains control of the House of Representatives.

Ladder 3

Question % Choice z-Statistic
E 2

9 , W
E 1

W 5 8
E 3

6 # W # 7
E 4

W , 6

3.1 R 1 44 200 0 0 0
S 1 56 120 120 0 0

0.94
3.2 R 2 52 200 0 120 0

S 2 48 120 120 120 0
2.43*

3.3 R 3 32 200 0 120 120
S 3 68 120 120 120 120

W 5 number of University of Washington football victories, 1995–1996 season.
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Table 1 Continued

Ladder 4

Question % Choice z-Statistic
E 1

84 # T
E 2

81 # T , 84
E 3

75 # T , 81
E 4

T , 75

4.1 R 1 54 0 100 0 0
S 1 46 60 60 0 0

1.03
4.2 R 2 60 0 100 60 0

S 2 40 60 60 60 0
4.47*

4.3 R 3 18 0 100 60 60
S 3 82 60 60 60 60

T 5 high temperature of Seattle on June 15, 1995.

Ladder 5

Question % Choice z-Statistic
E 1

J , 70 ù A $ 70
E 2

J , 70 ù A , 70
E 3

J $ 70 ù A , 70
E 4

J $ 70 ù A $ 70

5.1 R 1 59 0 80 0 0
S 1 41 40 40 0 0

0.77
5.2 R 2 66 0 80 40 0

S 2 34 40 40 40 0
4.11*

5.3 R 3 31 0 80 40 40
S 3 69 40 40 40 40

J 5 July 1, 1995 High in Seattle.
A 5 August 1, 1995 High in Seattle.

Ladder 6

Question % Choice z-Statistic
E 2

D , 4200
E 1

4200 # D , 4250
E 3

4250 # D , 4300
E 4

4300 # D , 4600
E 5

D . 4600

6.1 R 1 52 300 0 150 0 0
S 1 48 150 150 150 0 0

1.56
6.2 R 2 65 300 0 150 150 0

S 2 35 150 150 150 150 0
5.14*

6.3 R 3 28 300 0 150 150 150
S 3 72 150 150 150 150 150

D 5 Dow Jones Industrial Average close on June 30, 1995 (asked on May 19, 1995, close of 4341).

* Denotes significance at the 0.05 level.
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outcome) was counter-balanced within the question-
naire.

3.2. Results
The percentage of subjects choosing the risky or safe
prospect in each of the questions is given in Table 1.
Note that in all ladders, we see an inverse U-shaped
pattern, the percentage of risky choices (%R, for short)
increases then decreases, a finding consistent with
concave and then convex decision weights. Table 1
also shows the z-statistics for the differences between
pairs of proportions (binomial test). For example, in
ladder 1, %R 1 (%R for rung 1) is significantly different
from %R 2 ( p , 0.001), and %R 2 is significantly
different from %R 3 ( p , 0.001). We can thus reject
SEU, which requires that %R remain constant across
rungs. Whereas %R 1 , %R 2 in all ladders, only two of
the six comparisons of %R 1 and %R 2 were statistically
significant at a 5 0.05. It is noteworthy that %R 3 is
significantly lower than %R 2 in all six ladders, indi-
cating a very pronounced certainty effect. Note that
the U-shaped pattern exhibited in this study mirrors
the results presented in the introduction using Chi-
cago temperature.

4. Study 2: Cash Equivalence
The second study tests the concavity/convexity con-
dition using a within-subject cash equivalence proce-
dure instead of a choice procedure. We also collected
probability assessments of the relevant events to test
for properties of r[ such as subadditivity, interior
additivity, and binary complementarity.

4.1. Procedure
We recruited 19 University of Washington advanced
undergraduate and graduate students in psychology
to complete a questionnaire. Subjects were paid $5 for
participation and asked to give cash equivalents for
each of 18 prospects (Table 2). Before proceeding,
respondents received instruction (available upon re-
quest from the authors) and were given a practice
problem. Ladder 7 involved the same six 1996 national
election questions used in ladder 2. Ladder 8 con-
tained 12 questions tied to the number of 1995–1996
University of Washington football team victories. In
addition, subjects provided 23 probability judgments

(Table 3). Sixteen of the 19 subjects provided usable
responses (the remaining 3 subjects failed to answer
all the probability questions).

4.2. Choice Results
The results using a cash equivalence procedure are
similar to those reported for study 1. The first test
we conduct is an ordinal test. For each rung i,
subjects gave a cash equivalent for the risky pros-
pect, CE(R i), and for the safe prospect, CE(S i). If
CE(R i) . CE(S i), then we infer that R i s S i for that
subject. On the other hand, CE(R i) , CE(S i) implies
that R i a S i, while CE(R i) 5 CE(S i) implies that R i

; S i. Counting indifference as 0.5, we arrive at the
choice percentages shown in Table 2 (%Choice). It is
reassuring that the pattern for ladder 7 is virtually
the same as for ladder 2, because the ladders involve
the same questions.

An ordinal test is clearly inefficient. Thus, we also
conduct a cardinal analysis using the cash equivalents
directly. Table 2 provides CE(R i) 2 CE(S i) for ladders
7 and 8. The ladders exhibit the same inverted U-
shaped pattern as the ladders in study 1. Since all
questions were run within-subject, we conducted a
one-sample t-test on the paired second differences,
(CE(R i) 2 CE(S i)) 2 (CE(R j) 2 CE(S j)). (This test is
equivalent to the test of the interaction in a two-way
analysis of variance with repeated measures.) In lad-
der 7, for example, the second difference between
rungs 1 and 2 was statistically significant (t 5 3.11,
df 5 18), as was the difference between rungs 2 and 3
using the same test (t 5 7.45, df 5 18). The second
differences in ladder 8 between rungs 1 and 3 (t
5 2.85, df 5 18), rungs 2 and 3 (t 5 2.37, df 5 18),
and rungs 3 and 5 (t 5 2.26, df 5 18) were
statistically significant as well. Note that this analysis
explicitly assumes a linear value function, v( x) 5 x. A
sensitivity analysis indicates that the same results are
statistically significant for a range of concave or con-
vex power value functions (0.5 # a # 1.5).

4.3. Probability Judgments
Mean and median judged probabilities are given in
Table 3. If probability judgments are additive in lad-
der 7, then

r~DP ù DH! 1 r~RP ù DH! 5 r~DH!.
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To the contrary, the mean probability estimates for
DP ù DH, RP ù DH, and DH are 0.22, 0.30, and 0.34,
respectively. Figure 1 shows subadditivity at the level
of individual subjects. Note that of 16 subjects, 2 are
additive, and 14 are subadditive ( p , 0.001, one
sample t-test). Subadditivity is also exhibited in the
following judgments (mean estimates):

r~DP! 1 r~RP ù DH! 5 0.44 1 0.30

5 0.74 . r~DP ø DH! 5 0.54.

In ladder 8, subadditivity of r[ is exhibited on the
following partition: r(91) 1 r(7) . r(7 ø 91) ( p
, 0.001, one sample t-test). As with ladder 7, there is
subadditivity at the level of individual subjects. Figure
1 indicates that of 16 subjects, 13 are subadditive, 2 are
additive, and 1 is superadditive. We also find subad-
ditivity of r[ on all other relevant partitions.

In ladder 7, we tested for binary complementarity
on the binary partition “Republican wins Presidency”
(RP) and “Democrat win Presidency” (DP). The mean

Table 2 Choice Questions for Study 2

Ladder 7

Question

Cash Equivalents

%Choice CE(R i) 2 CE(S i)
E 1

DP ù RH
E 2

DP ù DH
E 3

RP ù DH
E 4

RP ù RHMedian Mean Std. Dev.

7.1 R 1 55 73 60 15% 258 0 350 0 0
S 1 105 131 82 300 300 0 0

7.2 R 2 100 123 90 55% 1 0 350 300 0
S 2 100 122 85 300 300 300 0

7.3 R 3 150 173 77 3% 2126 0 350 300 300
S 3 300 300 0 300 300 300 300

DP 5 A Democrat wins the Presidential election.
RP 5 A Republican wins the Presidential election.
DH 5 The Democratic Party gains control of the House of Representatives.
RH 5 The Republican Party gains control of the House of Representatives.

Ladder 8

Question

Cash Equivalents

%Choice
CE(R i) 2

CE(S i)
E 2

V $ 9
E 1

V 5 8
E 3

V 5 7
E 4

V 5 6
E 5

V 5 5
E 6

V 5 4
E 7

V 5 3
E 8

V , 3Median Mean Std. Dev.

8.1 R 1 81 88 44 38% 8.0 200 0 0 0 0 0 0 0
S 1 79 78 28 120 120 0 0 0 0 0 0

8.2 R 2 104 110 34 56% 14.6 200 0 120 0 0 0 0 0
S 2 96 105 25 120 120 120 0 0 0 0 0

8.3 R 3 120 120 35 88% 27.5 200 0 120 120 0 0 0 0
S 3 99 100 22 120 120 120 120 0 0 0 0

8.4 R 4 114 110 39 66% 22.5 200 0 120 120 120 0 0 0
S 4 98 105 27 120 120 120 120 120 0 0 0

8.5 R 5 117 120 38 66% 16.3 200 0 120 120 120 120 0 0
S 5 106 115 21 120 120 120 120 120 120 0 0

8.6 R 6 123 120 40 66% 15.7 200 0 120 120 120 120 120 0
S 6 114 120 14 120 120 120 120 120 120 120 0

V 5 number of University of Washington football victories in 1995–96 season.
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and median probability estimates for r(RP) 1 r(DP)
were 0.98 and 1.00, respectively, consistent with bi-
nary complementarity (n.s., t 5 20.78, p 5 0.45, one
sample t-test).4

Finally, we observe a new property of r[, interior
additivity. The mean judged probability for the event
“University of Washington wins nine or more games”
(91) is 0.50. Probability estimates for the same event
are also “revealed” from other estimates, e.g.,
r(7 ø 91) 2 r(7). Consistent with subadditivity, the
mean of the revealed probability estimate is much
lower, 0.23. Four other mean estimates [r(6 to 7 ø 91)
2 r(6 to 7), r(5 to 7 ø 91) 2 r(5 to 7), r(4 to 7 ø 91)
2 r(4 to 7), and r(3 to 7 ø 91) 2 r(3 to 7)] obtained
similarly are all between 0.20 and 0.25, and all signif-
icantly different from the mean estimate for rung 1.

4.4. Theoretical Interpretation
In both studies 1 and 2, we found that the decision
weighting function v[ is concave and then convex, as
suggested by the consistent inverse U-shaped pattern
in each of the ladders. Recall that these patterns are
consistent with the example given in the Introduction,
as well as Wu and Gonzalez’s (1996) study of decision
making under risk. In study 2, we also found that r[
is a support function. In addition, interior additivity of
r[ held for events investigated in study 2, although
whether interior additivity holds more broadly is an
empirical question.5

We return to the problem of teasing apart the two
sources of curvature of decision weights. Our findings
could be due to some combination of concavity,
subadditivity, or linearity of p[ and of r[. It turns
out that the three empirical conclusions imply that the
probability weighting function is S-shaped. Strict con-
cavity of decision weights implies that

4 Strictly speaking, RP and DP do not constitute a binary partition.
Both studies were conducted prior to the peak speculation about
General Colin Powell’s third party candidacy: Ladder 4 (December
1994) and Ladder 7 (August 1995). Starting in October 1994, the
Iowa Electronic Markets offered a winner-take-all contract that paid
$1 if neither the Democrat nor Republican nominee was elected
President. The prices can be interpreted as “market probabilities.”
The “other candidate” contract peaked at $0.18 on September 26,

1995, and was trading at $0.03 at the time of study 2 and at $0.05
during study 1.
5 Note that interior additivity is a very strong condition. Denote q i

5 r(E i), r i 5 r(E ij) 2 r(E j) for non-null E j, and D i 5 q i 2 r i, the
difference between direct and revealed estimates. Thus, D i can be
thought of as a residual or bias. Since r(E ij) 5 q i 1 r j 5 q j 1 r i, D i

5 D j for all i, j. Thus, one simple model that gives rise to interior
additivity and constant D i follows. Suppose that t i is an individual’s
“true” subjective probability of E i. Then the direct probability is
given by q i 5 t i 1 a, where a . 0 is a constant that reflects a degree
of overestimation and the revealed probability is given by r i 5 t i

2 b, where b . 0 is a constant that reflects a degree of underesti-
mation.

Table 3 Probability Estimates for Study 2

Ladder 7

Assessed Event

Probability

Median Mean Std. Dev.

DP ù DH 0.20 0.22 0.14
DP 0.40 0.44 0.18
DP ø DH 0.53 0.56 0.21
RP ù DH 0.30 0.30 0.17
RP 0.55 0.54 0.10
DH 0.32 0.34 0.17

Ladder 8

Assessed Event

Probability

Median Mean Std. Dev.

9 or more 0.53 0.50 0.20
8 or more 0.60 0.65 0.19
7 or more 0.72 0.72 0.17
6 or more 0.78 0.78 0.17
5 or more 0.90 0.85 0.13
4 or more 0.95 0.90 0.10
3 or more 0.92 0.90 0.09
7 0.30 0.35 0.23
6 or 7 0.40 0.43 0.19
5 to 7 0.44 0.44 0.17
4 to 7 0.43 0.46 0.18
3 to 7 0.50 0.53 0.18
7 or 9 or more 0.59 0.58 0.16
6 or 7 or 9 or more 0.65 0.64 0.13
5 to 7 or 9 or more 0.63 0.64 0.15
4 to 7 or 9 or more 0.70 0.71 0.15
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v~E12! 2 v~E2! . v~E123! 2 v~E23!

. v~E1234! 2 v~E234!,

or

p~r~E12!! 2 p~r~E2!! . p~r~E123!! 2 p~r~E23!!

. p~r~E1234!! 2 p~r~E234!!. (4.1)

Defining

r1 5 r~E12! 2 r~E2! 5 r~E123! 2 r~E23!

5 r~E1234! 2 r~E234!

by interior additivity; and r 3 5 r(E 23) 2 r(E 2) . 0
and r 4 5 r(E 234) 2 r(E 23) . 0 by monotonicity of r[,
we can rewrite (4.1) as

p~r~E2! 1 r1! 2 p~r~E2!!

. p~r~E2! 1 r1 1 r3! 2 p~r~E2! 1 r3!

. p~r~E2! 1 r1 1 r3 1 r4! 2 p~r~E2! 1 r3 1 r4!. (4.2)

Equation (4.2) is implied by concavity of p[ below
r(E 1234). Thus interior additivity proves to be a crucial
concept: it allows us to attribute part of the inverse
U-shaped pattern in studies 1 and 2 to curvature of
p[. We thus conclude that the probability weighting
function is concave and then convex in the domain of
uncertainty, as it is in risk.

5. Conclusion
We found that individuals violate SEU in a systematic
fashion. The patterns observed in studies 1 and 2
resemble the findings of Wu and Gonzalez (1996) in
the domain of risk. This resemblance suggests the
possibility of general principles underlying behavior
in both domains. We, like Tversky and Fox (1995) and
Fox and Tversky (1998), are encouraged that the same
basic concepts and principles seem to underlie both
risk and uncertainty. In fact, one psychological prin-
ciple, diminishing sensitivity, explains a great deal in
both domains. The various functions, p[, r[, and
v[, all appear to exhibit diminishing sensitivity, a
decrease in marginal effect as the distance from a
reference point increases. With p[, the reference
points seem to be 0, impossibility, and 1, certainty;
with r[, the reference points seem to be f, the null
set, and S, the entire set; with v[, the reference point
seems to be the “0” point or status quo.

Thus, even though some have argued that gambles
are too barren to have any implications for real world
decision making, the present studies suggest that risk
illuminates a basic fact about decision making. The
decision weighting function is inverse S-shaped (con-
cave/convex) for both risk and uncertainty. However,
our analysis also adds substance to the critique about
gambles. One reason gambles are barren is because
they do not consider the first phase of the two-stage

Figure 1 Subadditivity of Probability Judgments
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model: the probability assessment phase. Gambles
provide an adequate abstraction if one is interested in
studying the probability weighting function but are
insufficiently rich to permit a complete understanding
of decision making. We proposed a two-stage model,
presented a new property of judged probabilities,
which we call interior additivity, and showed how
interior additivity permits the contributions of the two
stages to be disentangled.6

6 This paper has benefited from discussions with Craig Fox, Chip
Heath, Amos Tversky, as well as the comments of an anonymous
associate editor and two anonymous referees. Special thanks go to
Peter Wakker for his careful reading and detailed comments. This
work was supported by the Research Division of the Harvard
Business School and Grant SES 91-10572 from the National Science
Foundation.
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