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ABSTRACT
We develop a general method to ‘self-calibrate’ observations of galaxy clustering with respect
to systematics associated with photometric calibration errors. We first point out the danger
posed by the multiplicative effect of calibration errors, where large-angle error propagates to
small scales and may be significant even if the large-scale information is cleaned or not used
in the cosmological analysis. We then propose a method to measure the arbitrary large-scale
calibration errors and use these measurements to correct the small-scale (high-multipole)
power which is most useful for constraining the majority of cosmological parameters. We
demonstrate the effectiveness of our approach on synthetic examples and briefly discuss how
it may be applied to real data.

Key words: techniques: photometric – galaxies: statistics – cosmological parameters – dark
energy – large-scale structure of Universe.

1 IN T RO D U C T I O N

Observations of large-scale structure (LSS) have proven to be a
powerful probe of cosmology in recent years. Earlier large galaxy
surveys, such as CfA (de Lapparent, Geller & Huchra 1986), APM
(Maddox et al. 1990), and 2dF (Colless et al. 2001; Cole et al. 2005),
have paved the way for modern surveys like WiggleZ (Parkinson
et al. 2012), SDSS (York et al. 2000; Tegmark et al. 2004; Abaza-
jian et al. 2009), and the Baryon Oscillation Spectroscopic Survey
(BOSS), the current incarnation of SDSS (Ahn et al. 2012; Dawson
et al. 2013). These surveys have identified millions of galaxies and
obtained spectra (and therefore redshifts) of over one million, al-
lowing us to map the three-dimensional distribution of matter in the
Universe. The enormous data sets resulting from these surveys are
often distilled into measurements of the location of the peak in the
correlation function corresponding to the scale of baryon acoustic
oscillations (BAO), the imprint on structure resulting from sound
waves propagating in the early Universe (Eisenstein et al. 2005; Per-
cival et al. 2010; Padmanabhan et al. 2012; Anderson et al. 2013;
Ross et al. 2014). These BAO measurements, some of which are
now at the per cent level (Anderson et al. 2014), have been crucial
in that they complement other probes of cosmic expansion to help
break degeneracies between key cosmological parameters.

But there is much more information in the power spectrum than
just the primary BAO peak, and with ongoing surveys like the Dark
Energy Survey (DES; Abbott et al. 2005), which is on track to iden-
tify ∼300 million galaxies, the galaxy power spectrum as a whole
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will complement other probes of cosmology (CMB power spectra,
Type Ia supernovae, weak lensing, etc.) to place tight constraints on
dark energy and other cosmological parameters. Planning is already
underway for future wide-field LSS surveys, such as LSST (Ivezic
et al. 2008) and Euclid (Laureijs et al. 2011).

Making these observations suitable for cosmology is not trivial.
With the enormous statistical power of surveys like DES, control
of systematics becomes crucial, especially at small scales where
cosmic variance is small. A major class of systematic errors is pho-
tometric calibration errors, by which we mean any systematic that
effectively causes the magnitude limit of the sample to vary across
the sky, thus biasing the true galaxy power spectrum. A number of
recent observations (Goto, Szapudi & Granett 2012; Ho et al. 2012,
2013; Pullen & Hirata 2013; Agarwal et al. 2014a; Agarwal, Ho
& Shandera 2014b; Giannantonio et al. 2014) show a significant
excess of power at large scales that likely results from such cali-
bration errors that have not been accounted for. Recent work (Ross
et al. 2011; Ho et al. 2012; Leistedt et al. 2013; Pullen & Hirata
2013; Agarwal et al. 2014a; Leistedt & Peiris 2014) has focused
on mitigating these systematics in order to probe the underlying
cosmology.

Huterer, Cunha & Fang (2013), which we will refer to as H13,
introduced a formalism for quantifying the effect of an arbitrary
photometric calibration error. They found that in order to use in-
formation from large scales to constrain cosmological parameters,
the root-mean-square variation due to the calibration field must
be ∼0.001–0.01 mag or less in order to avoid significantly biasing
cosmological parameters. This is a very stringent requirement.

A potentially more dangerous effect is the multiplicative leakage
of these large-angle errors to small angular scales, where most

C© 2015 The Authors
Published by Oxford University Press on behalf of the Royal Astronomical Society

mailto:dlshafer@umich.edu


2962 D. L. Shafer and D. Huterer

cosmological information resides. As discussed in H13, the
observed number density of galaxies is given by Nobs(n̂) =
[1 + c(n̂)] N (n̂), where the true number density N (n̂) is modulated
by a calibration-error field c(n̂), which is directly related to a host of
interrelated photometric effects (survey depth, completeness, atmo-
spheric conditions, galactic dust, etc.). Even though the calibration
error is significant only at large angular scales, it multiplies the true
galaxy field, so the observed field is affected on all angular scales.
This multiplicative effect, to our knowledge first pointed out in H13
in the context of LSS systematics, is further studied in this work.

Current methods to clean the power spectra have been impres-
sively efficient, but they typically rely on systematics templates –
prior knowledge of the relative spatial variation of the contamina-
tion across the sky due to a known systematic. The methods rely on
the assumption that these templates are correct and that the set of
templates is complete; any unknown large-scale systematic that is
not covered by one of the templates (or some combination thereof)
will not be accounted for.

Mode projection (or extended mode projection, see Leistedt &
Peiris 2014) is a particularly effective method. Essentially, it is a
way of marginalizing over spatially varying patterns on the sky
that are expected to be caused by various systematics. While mode
projection has been shown to be effective at mitigating the added
power from known systematics, this method cannot remove mul-
tiplicative errors. To understand why, suppose for simplicity that
a single systematic effect modulates the observed galaxy densities
and that the shape of the template is that of a pure spherical har-
monic (so that c(n̂) ∝ Y�m(n̂) for some �, m). This modulation will
then not only add power at the angular scale �, but it will also affect
the power at all other multipoles. The obvious way to ‘project out’
this mode, at least in principle, is to simply ignore that one contam-
inated m mode when estimating the variance C�. The additive error
is removed entirely with little loss of cosmological information, but
other multipoles have still been affected by the multiplicative effect
in accordance with our equation (13) below.

In this paper, we study a new approach that is both alternative and
complementary to previously employed techniques: using some of
the power spectrum observations themselves to directly measure the
systematic contamination and correct the rest of the measurements
for a cosmological analysis. Since the calibration errors are expected
to enter at large scales and then fall off quickly at higher multipoles
(smaller scales), one may interpret the low-multipole power spec-
trum as measurements of the systematics and use these to correct the
power spectrum at high multipoles, sacrificing some cosmological
information from large scales to remove the multiplicative error and
obtain unbiased estimates of cosmological parameters from small
scales. The benefit of this approach is that no templates or otherwise
detailed modelling of the systematics is required at this level.

The rest of the paper is organized as follows. In Section 2, we
review and extend the calibration formalism introduced in H13,
discuss our Fisher matrix formalism, and describe a fiducial model
and DES-like survey. In Section 3, we quantify the effect of mul-
tiplicative calibration error for our fiducial survey and demonstrate
the self-calibration method. In Section 4, we summarize our conclu-
sions and discuss how one might apply the self-calibration method
to real data.

2 M E T H O D O L O G Y

In this section, we outline our formalism to describe the calibration
errors, review and extend the Fisher matrix for the galaxy power
spectrum, and detail our fiducial model and survey.

2.1 Calibration error formalism

In the absence of all systematics, we would observe the true num-
ber density of galaxies on the sky, which we expand in spherical
harmonics

δ(n̂) ≡ N (n̂) − N̄

N̄
=

∞∑
�=0

�∑
m=−�

a�mY�m(n̂) , (1)

where a bar denotes a sky average and where the monopole vanishes
(a00 = 0) since it is proportional to the average overdensity on the
sky, which is zero by construction. The coefficients a�m are expected
to be Gaussian random variables with a mean of zero and a variance
that depends on the cosmological model. The various m modes are
statistically independent under the assumption of isotropy, so we
have the familiar relations

〈a�ma∗
�′m′ 〉 = δ��′ δmm′ C� , (2)

〈a�m〉 = 0 . (3)

Following H13, we now consider the effect of an arbitrary variation
in the limiting magnitude δmmax(n̂) of the photometric survey due
to calibration variation across the sky. This magnitude variation im-
plies a relative variation in galaxy counts [δN/N ](n̂) ∝ δmmax(n̂),
where the constant of proportionality depends on the faint-end slope
of the luminosity function s(z) ≡ d log10 N (z,m)/dm|mmax that may
depend on redshift but does not depend on direction. More gener-
ally, one can write [δN/N ](n̂) ≡ c(n̂) so that the observed galaxy
number density Nobs(n̂) is equal to the true number density N (n̂)
modulated by the field c(n̂), which we can also expand in spherical
harmonics:

Nobs(n̂) = [1 + c(n̂)] N (n̂) , (4)

c(n̂) =
∑
�m

c�mY�m(n̂) . (5)

The calibration coefficients c�m are deterministic (not inherently
stochastic) and thus have the trivial statistical properties

〈c�mc∗
�′m′ 〉 = c�mc∗

�′m′ , (6)

〈c�m〉 = c�m . (7)

In other words, the calibration-error field is a fixed pattern on the
sky, and there is no loss of generality in making this assumption to
simplify the analysis. The observed overdensity is given by

δobs(n̂) ≡ Nobs(n̂) − N̄obs

N̄obs
= [1 + c(n̂)] N (n̂)

N̄ (1 + ε)
− 1

= 1

1 + ε
[δ(n̂) + c(n̂) + c(n̂)δ(n̂) − ε] , (8)

where N̄obs = N̄ (1 + ε) is the observed mean number of galaxies
per pixel on the sky. Then ε is defined by

ε ≡ 1

N̄
c(n̂)N (n̂) = c(n̂) [1 + δ(n̂)]

= c00√
4π

+ 1

4π

∑
�m

c�ma∗
�m , (9)

where the overbar again denotes a sky average.
Expanding the observed overdensity in spherical harmonics,

δobs(n̂) =
∑
�m

t�mY�m(n̂) , (10)
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we calculate the expansion coefficients of δobs to be

t�m = 1

1 + ε

⎡
⎢⎢⎣a�m + c�m −

√
4π ε δ�0 +

∑
�1m1
�2m2

R�1 �2 �
m1m2m c�1m1a�2m2

⎤
⎥⎥⎦,

(11)

where the coupling coefficient R�1 �2 �
m1m2m is a variant of the Gaunt

coefficient, the result of integrating a product of three spherical
harmonics. It can be written in terms of Wigner 3-j symbols:

R�1 �2 �
m1m2m ≡ (−1)m

√
(2�1 + 1)(2�2 + 1)(2� + 1)

4π

×
(

�1 �2 �

0 0 0

) (
�1 �2 �

m1 m2 −m

)
. (12)

In this formalism, how will the observed power be related to the
true power C�? If the observed coefficients are t�m, then the observed
(potentially biased) power is given by (Appendix A)

T� =
∑

m〈|t�m|2〉
2� + 1

= C� + Ccal
� − 1

2π
Ccal

� C�

+ 1

4π

∑
�1�2

(2�1 + 1) Ccal
�1

(
�1 �2 �

0 0 0

)2

(2�2 + 1) C�2 , (13)

where we have defined the calibration-error contribution to the ob-
served power as

Ccal
� ≡

∑
m

|c�m|2/(2� + 1) . (14)

It is worth making several comments about equation (13), where
the observed angular power spectrum T� is given as a function
of the true power C�, the calibration-error power Ccal

� , and various
geometric coupling factors. The second term on the right-hand side,
Ccal

� , represents the additive effect of calibration error, which is
typically important at large angular scales (such as � � 20). The
other terms are products of the true and calibration-error power; they
represent the multiplicative effect of calibration errors that affects
the observed power T� at all angular scales. Note that equation (13)
is equivalent to the formula for T� from H13, though here we have
substantially simplified it by defining away the 1/(1 + ε) factor and
using Wigner 3-j relations (see Appendix A for more details).

Finally, we can gain some insight into the multiplicative con-
tribution to T� by simplifying equation (13) under the assumption
that Ccal

� vanishes for multipoles greater than some cutoff multipole
� = �max, cal and with the approximation that the true power C� is
constant in the multipole range � ± �max, cal that contributes to the
sum over �2. This allows us to factor C�2 out of the sum and apply
the Wigner 3-j relation equation (A8). Then equation (13) simply
becomes

T� � C� + Ccal
� − 1

2π
Ccal

� C� + σ 2
c C� , (15)

where σ 2
c ≡ Var[c(n̂)] = ∑∞

�=1(2� + 1)Ccal
� /(4π) is the variance of

the calibration field across the sky. This is generally an excellent
approximation, and it shows that the multiplicative effect (the last
term) is roughly independent of the shape of the calibration power
spectrum. Also, all C� at � > �max, cal are multiplied by roughly the
same factor, an effect mimicking that of an incorrect galaxy bias.

2.2 Fisher matrix and bias

We now review and extend the standard LSS Fisher matrix for-
malism in order to forecast both the extent to which multiplicative
calibration errors bias cosmological parameters and the uncertainty
that results from trying to measure the contamination itself.

In the absence of systematics, and when cross-power spectra
are assumed to vanish (C ij

� ≡ 0 for i 
= j), the observables Cii
� are

uncorrelated with a variance due to cosmic sampling variance and
shot noise:

Var[Cii
� ] = 2

(2� + 1)fsky

(
Cii

� + 1

Ni

)2

, (16)

where N i is the number of galaxies per steradian for redshift bin i.
Then the well-known Fisher matrix for measurements of the power
spectrum is given by

Fαβ =
∑

i

∑
�

∂Cii
�

∂pα

1

Var[Cii
� ]

∂Cii
�

∂pβ

, (17)

where the pi are cosmological parameters.
We will be particularly interested in the effect of the presence of

uncorrected-for calibration errors on cosmological parameters. A
useful Fisher-matrix-based formalism is available to evaluate these
effects (Knox, Scoccimarro & Dodelson 1998; Huterer 2002). Given
a bias δm in a vector of observables m with covariance matrix C,
the linear estimate for the bias in cosmological parameters is

δ p = F−1D C−1δm , (18)

where the matrix D contains the derivatives of the observables
with respect to the parameters evaluated at their fiducial values:
Dij = ∂mj/∂pi .

We can extend the Fisher matrix to measure both cosmological
parameters and calibration-error parameters Ccal

� from the observed
(biased) angular power spectrum. Our observables are now the set
of T ii

� , and we calculate their covariance from equation (15). To a
good approximation, they are uncorrelated with a variance

Var[T�] � Var[C�]

(
1 + σ 2

c − 1

2π
Ccal

�

)2

, (19)

where Var[C�] is the usual error from cosmic variance plus shot
noise, as in equation (16), and the redshift bin indices have been
suppressed. The derivatives with respect to the parameters are

∂T�

∂pi

� ∂C�

∂pi

(
1 + σ 2

c − 1

2π
Ccal

�

)
, (20)

∂T�

∂Ccal
�′

� δ��′

(
1 − 1

2π
C�

)
+ 2�′ + 1

4π
C� . (21)

Note that when none of the Ccal
� are added as parameters, the Fisher

matrix for cosmological parameters reduces to the usual Fisher ma-
trix equation (17), independent of the fiducial size of the calibration
errors.

2.3 Fiducial model and survey

At small scales, we use the Limber approximation, which ignores
the contribution of radial modes, and model the angular power
spectra of galaxy density fluctuations as

C
ij
� = bibj

∫ ∞

0

H (z)

r2(z)
P

(
� + 1

2

r(z)
, z

)
Wi(z) Wj (z) dz , (22)
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Figure 1. Number density of galaxies per steradian for our fiducial survey.
Galaxies are assigned to the five redshift bins in proportion to the areas of
the coloured regions, each spanning 	z = 0.2.

where b i is the galaxy bias for the i th redshift bin (which we assume
to be a constant), H(z) is the Hubble parameter, r(z) is the comoving
distance, P(k, z) is the power spectrum, and the weights are given
by

Wi(z) = n(z)

Ni

[
θ

(
z − zi

min

) − θ
(
z − zi

max

)]
, (23)

where θ (x) is the Heaviside step function, zi
min and zi

max are the
lower and upper bound of the ith redshift bin, and n(z) is the radial
distribution of galaxies per steradian. We use the transfer functions
and non-linear modelling of CAMB (Lewis, Challinor & Lasenby
2000) to compute and evolve the power spectrum.

The Limber approximation is not valid at the largest scales, so
for � ≤ 30, we use the full expression for the power spectrum:

C
ij
� = 2

π

∫ ∞

0
P (k, 0) I i

� (k) I
j
� (k) k2dk , (24)

I i
� (k) ≡ bi

∫ ∞

0
Wi(z) D(z) j�(k r(z)) dz , (25)

where D(z) is the linear growth factor relative to z = 0 (since we are
safely in the linear regime) and j�(x) is the spherical Bessel function
of the order of �. Note that in the above we are assuming a flat
universe.

Our fiducial DES-like survey covers 5000 deg2 (corresponding to
fsky � 0.12) and identifies a total of 300 million galaxies (� 17 galax-
ies per arcmin2). We split the sample into five tomographic redshift
bins of width 	z = 0.2, centred at z = 0.1, 0.3, 0.5, 0.7, and 0.9. We
take the radial distribution of galaxies to be n(z) ∝ z2exp ( − z/z0),
with z0 = 0.3, and divide the total number of galaxies among the
redshift bins accordingly. As shown in Fig. 1, the distribution peaks
at z = 2z0 = 0.6. We assume that the photometric redshifts can be
determined well enough that the cross-power spectra between these
bins are small enough to be ignored, making the power spectra for
different z slices statistically independent.

We choose for our fiducial cosmology a flat �CDM model
with �m = 0.3, �m h2 = 0.143, �b h2 = 0.0222, ns = 0.96, and
109As = 2.2 for k0 = 0.05 Mpc−1, values which agree well with data
from Planck (Planck Collaboration XVI 2014) and other probes.

In our analysis, we allow the dark energy equation of state to
vary along with the parameters above, though we keep �m h2 and
�b h2 fixed at their fiducial values. In practice, Planck CMB mea-
surements constrain these parameters very well (to ∼1 per cent), so

we are effectively adding Planck priors to all of our constraints and
assuming the remaining uncertainty to be negligible, which should
be a reasonable approximation. We assume a (constant) galaxy bias
b i = 2.2 (same for all redshift bins), which we hold fixed for simplic-
ity. In a full analysis, one should parametrize the bias appropriately
and marginalize, since the bias parameters may have significant
uncertainties and be somewhat degenerate with cosmological pa-
rameters. Allowing the dark energy equation of state to vary with
time as w(a) = w0 + wa(1 − a) (Linder 2003), our fiducial parame-
ter space is therefore five-dimensional (�m, w0, wa, ns, As), though
we briefly consider a constant equation of state (with fixed wa = 0)
as well.

3 R ESULTS

3.1 Biases from multiplicative errors

H13 used a similar formalism to study the effect of arbitrary pho-
tometric calibration errors on cosmological parameters. The large
biases that resulted were primarily due to additive errors (the Ccal

�

term in equation 13), which strongly biased the power spectrum at
low multipoles and which were assumed negligible at smaller scales
(Ccal

� = 0 for � > �max, cal). With the exception of some parameters
(e.g. fNL), most of the constraining power on cosmological param-
eters, including dark energy parameters, comes from high �, where
there are many more modes to minimize cosmic variance. The sim-
plest way to avoid biases due to these large additive errors at low �

is to just remove those multipoles from the analysis, sacrificing the
modest amount of information they contain. For our fiducial survey,
we find that this increases the errors on parameters by ∼1 per cent,
though this number is sensitive to the model and which parameters
are varied. Alternatively, with detailed modelling of the systematic
effects, one can attempt to remove the contaminated modes and
obtain useful cosmological information from the low multipoles.

The problem is not so simple when there are significant multi-
plicative errors, corresponding to the other terms in equation (13),
where a given multipole is not only affected by calibration errors
at that scale, but also calibration errors from every other multipole.
Ignoring or cleaning the low-� information is not helpful here, since
the biases have already ‘leaked’ into the high-� power. The multi-
plicative errors are much smaller (by a factor of the order of C�) than
the additive errors, but for a large total amount of contamination,
the effects can be important.

In Fig. 2, we show our fiducial power spectra along with the same
power spectra when biased due to multiplicative errors, for three of
the five redshift bins. The spectra are binned with inverse-variance
weights, and the error boxes represent the combined cosmic variance
and shot noise error for each bin. For definitiveness, we assume a
spectrum for the calibration systematics of Ccal

� ∝ �−2 (separately
for each redshift bin) and impose a cutoff such that Ccal

� = 0 for
� > �max, cal = 20. A variance of the calibration-error field across
the sky of σ 2

c = 0.1 is assumed. Recall that this quantity is related
to the power spectrum of calibration errors by σ 2

c ≡ Var[c(n̂)] =∑∞
�=1(2� + 1)Ccal

� /(4π). While this is a large contamination, it may
not be unrealistic for a survey like DES, since the relevant error
is the raw variation in the effective magnitude limit before any
attempts to clean or remove it. While the cleaning or marginalization
methods effectively remove the additive contribution, the Ccal

� term
in equation (13), the original multiplicative effects remain.

Note that the factor by which the power is increased by the
multiplicative errors is relatively constant, but since cosmic variance
decreases at higher �, the biases eventually become larger than the
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Figure 2. Multiplicative effect due to our fiducial calibration errors with
σ 2

c = 0.1 distributed on large scales � ≤ 20. The biased power spectrum T�

(black points) is compared to the true power spectrum C� (solid lines) for
three of the five redshift bins of our fiducial survey. The spectra are binned in
� with inverse-variance weights, and the error boxes include cosmic variance
and shot noise.

errors. From the approximate expression equation (15), we can
easily estimate this relative bias in the space of observables. The
multiplicative bias is σ 2

c C�, while the variance is given by equation
(16). Ignoring the shot noise contribution, the bias relative to the
error is therefore

T� − C�

σC�

�
√

(2� + 1) fsky

2
σ 2

c . (26)

For σ 2
c = 0.1, the bias is as large as the error for � � 800 and twice

as large for � � 3000. The biases on bandpowers, such as those
shown in Fig. 2, are more severe still, as cosmic variance is further
reduced by measuring the power spectrum in bins spanning several
independent � modes.

Fig. 3 shows the effect of the bias from Fig. 2 in the space of
dark energy parameters w0 and wa using information from � = 21
through �max = 2000. In this case, both w0 and wa are shifted from
their fiducial values by more than 3σ .

Fig. 4 shows the effect of these same biases in the full space
of our cosmological parameters. We plot 	χ2 as a function of
the maximum multipole �max used in the analysis, where 	χ2 =
δ p�F δ p. For the five-dimensional space of all parameters, this
is equivalent to the observable-space 	χ2 in the Fisher matrix
formalism. In this case, χ2 is shifted by 3σ for �max � 100. We also
show 	χ2 for the two-parameter spaces of �m and w (marginalizing
over As and ns but fixing wa = 0) and for w0 and wa (marginalizing
over the other three parameters). In these cases, χ2 is shifted by
more than 3σ for �max � 2500. Notice that the sizes of the biases
oscillate somewhat; since the Fisher derivatives sometimes flip sign,
the biases will cancel for some �max. This subtlety depends strongly
on which parameters are of interest, apparent here from the ‘out-of-
phase’ cancelling between the constant-w and w0–wa dark energy

Figure 3. Forecasted 68.3, 95.4, and 99.7 per cent joint constraints on the
w0–wa dark energy parametrization for our fiducial survey, using informa-
tion from � = 21 through �max = 2000 without calibration errors (blue) and
with multiplicative calibration errors from � ≤ 20 with σ 2

c = 0.1 (red).

Figure 4. Shift in parameter–space χ2 due to multiplicative calibration
errors as a function of the maximum multipole used in the analysis. We
show the effect on the full five-dimensional space of parameters (black)
along with the two-dimensional spaces of �m and w with fixed wa = 0
(blue) and w0 and wa (red). The overlaid dashed grey lines mark the 68.3,
95.4, and 99.7 per cent bounds for a two-dimensional Gaussian distribution
(for comparison with the red or blue lines).

parametrizations. It is therefore the envelope of the bias curves in the
�m–w and w0–wa spaces that indicates the bias one can realistically
expect.

Although we fix the galaxy bias in this illustration, it is worth
mentioning that the effect at high � of a constant (scale-independent)
galaxy bias is almost completely degenerate with the multiplicative
effect from low � (see equation (15) with Ccal

� = 0). In other words,
if the contaminated low multipoles are removed from the analysis
and the galaxy bias is constrained along with other cosmological
parameters, the inferred value of the galaxy bias will shift due to
the multiplicative effect, but the marginalized constraints on the
other cosmological parameters will not be significantly biased. Of
course, if the galaxy bias exhibits scale dependence or can be known
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independently to a good precision (which we effectively assumed
here), this will not be the case.

3.2 Self-calibration to remove multiplicative errors

We now study the possibility of measuring the contamination di-
rectly at low multipoles to correct the power at high multipoles.
Due to large cosmic variance, the low-� Ccal

� are not known pre-
cisely, and for a cut sky, there will be very few modes to inform
us about the lowest-� Ccal

� . In practice, the T� would be measured
in bandpowers, so one could then measure the calibration error in
bandpowers, but for our purposes here, we assume that each Ccal

�

can be measured with an associated error due to cosmic variance of
the true power (and shot noise, though it is negligible at the relevant
low multipoles). Note that in our Fisher formalism we are ignoring
any additional errors that may result from imperfectly extracting
T� from the cut sky, though these could be estimated in principle
(Efstathiou 2004; Pontzen & Peiris 2010; Leistedt et al. 2013).

To study the effect of a self-calibration procedure, we consider
the example in Section 3.1, where a calibration power spectrum
Ccal

� ∝ �−2 with σ 2
c = 0.1 and �max, cal = 20 has been added to each

Figure 5. Shift in the full five-dimensional parameter-space χ2 due to
multiplicative calibration errors as a function of the maximum multipole
used in the analysis, for calibration-error parameters measured up to var-
ious �max, meas. The overlaid dashed grey lines mark the 68.3, 95.4, and
99.7 per cent bounds for a five-dimensional Gaussian distribution.

of the fiducial power spectra. We introduce the Ccal
� as nuisance pa-

rameters to be constrained along with the cosmological parameters.
Since �max, cal = 20, there are 20 calibration-error parameters for
each of five redshift bins, for a total of 100 nuisance parameters.
Using the Fisher matrix formalism discussed in Section 2.2, we can
estimate the additional statistical error on cosmological parameters
that results from imperfectly measuring the Ccal

� .
In Fig. 5, we show the effect of measuring Ccal

� up to a variety of
�max, meas by plotting 	χ2 (in the five-dimensional parameter space
of �m, w0, wa, ns, and As) due to the remaining bias, as a function of
the maximum multipole �max used in the analysis. In other words,
for �max, meas = x, we constrain 5x total nuisance parameters. For
�max, meas = 20, 	χ2 = 0 for all �max, since the assumption is that
all of the calibration terms have been measured without significant
bias. Note the very large biases in the cosmological parameters
when �max, meas is low; that is, when we have not used measurements
of additive error at sufficiently many low multipoles to effectively
‘clean’ the high-multipole LSS information.

In Fig. 6, we show the statistical error and remaining bias in the w0

and wa dark energy parameters as a function of the maximum multi-
pole �max, meas at which calibration errors are measured. For both pa-
rameters, the statistical errors increase modestly (by ∼50 per cent),
while the biases approach zero at �max, meas = �max, cal. In this specific
case, it is apparent that one would need to measure systematics to
� � 10 in order to reduce the biases to a comfortable level (such
as ∼1/4 of the statistical error).

4 D I SCUSSI ON

In this paper, we have considered a general class of systematic errors
– photometric calibration errors – that contaminate measurements
of the galaxy angular power spectrum. These errors arise from any
effect which causes a spatial variation in the effective magnitude
limit of the photometric survey, modulating the true galaxy number
densities and biasing the angular power spectrum (see equation 13).
More specifically, we studied the effect of multiplicative errors,
where calibration error at any scale biases inferences of the power
spectrum at all other scales. In this case, cleaning the power spectra
of excess additive power, or excluding contaminated multipoles
from the analysis, does not remove the multiplicative effect. For a
large total amount of contamination, the multiplicative effect can
significantly bias cosmological parameters (Figs 3–4).

Figure 6. Statistical error (blue) and bias (dashed red) on w0 (left) and wa (right) as a function of the maximum multipole �max, meas at which calibration errors
are measured.
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Given the fact that these calibration errors tend to affect pri-
marily large angular scales (for instance � � 20), we proposed a
possible method of ‘self-calibrating’ the survey by using the largest
angular scales to measure the contamination itself, which can then
be removed from small scales where most of the information on
cosmological parameters resides. We studied a fiducial DES-like
survey, using Fisher matrix formalism to forecast errors and biases
in cosmological parameters given the survey parameters and our
assumed photometric calibration error. We then extended the Fisher
matrix to include the low-multipole calibration powers as nuisance
parameters. For a modest increase in statistical uncertainty, one
can remove the biases in cosmological parameters, including those
describing dark energy (Fig. 6).

We now briefly discuss how this method could be applied to
real data. One clear problem with the procedure is the near-perfect
degeneracy at large scales between the additive calibration-error
power and cosmological parameters. This means that nearly all
of the information on cosmological parameters must come from
small scales. While little information on most cosmological pa-
rameters comes from the largest scales, a major exception is the
non-Gaussianity parameter fNL, on which most information comes
from these scales (see fig. A1 of H13), making its measurement
difficult with this procedure. On the other hand, it may be possible
to incorporate cross-power spectra from overlapping redshift bins
and cross-correlations with other probes into this formalism. The
extra information, which may not be subject to the same systemat-
ics, could be used to constrain parameters like fNL along with the
general calibration-error parameters.

The other important assumption is that one can safely ignore
all additive error above some multipole �max, cal. For our illustra-
tion here, we assumed �max, cal = 20, though this is optimistic, and
one could easily make the cutoff somewhere else. While photo-
metric calibration error from known systematics tends to decrease
sharply at smaller scales, some contamination may still be present
at higher multipoles. Although one can probably assume that the
extra multiplicative effect from any of these (smaller) additive er-
rors is negligible, the additive errors themselves would need to be
removed via other means.

One could thus imagine using this procedure in conjunction with
mode projection and other cleaning techniques, using the cleanest
possible small-scale spectrum but still retaining the fully contam-
inated spectrum at large scales to constrain the calibration-error
parameters. This procedure would be particularly useful if one is
worried about unknown sources of calibration error but willing to
assume that these add significant power to multipoles below some
cutoff only.

Finally, if one is doubtful about removing all of the smaller scale
additive contamination using standard cleaning techniques, the only
way forward would be to choose a more conservative �max, cal that
is high enough for one to comfortably assume that the bias in the
remaining small-scale spectrum is due only to the multiplicative
effect from the larger scales.
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The observed (biased) angular power spectrum for tomographic redshift bins i and j is given by

T
ij
� =

∑
m〈t i

�mt
j∗
�m〉

2� + 1
, (A1)
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�m = 1
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00√
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4π
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�mai∗

�m , (A3)

where the R coupling is defined in equation (12). Since the monopole of the calibration field (or equivalently, the true mean galaxy density
N̄) is not measurable, we are free to specify a value, so we choose ci

00 = (−1/
√

4π)
∑
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�m so that εi = 0. Then
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Calculating the ensemble averages, we assume that the cosmological three-point function vanishes and that the c�m are fixed (not random)
variables, with the exception of c00 which must be considered separately. Using the definition of Ccal

� in equation (14), we have (for � 
= 0)

T
ij
� = C
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Note that a00, C0, t00, and T0 are all equal to zero by construction, while Ccal
0 does not contribute and is left undefined. Restricting to auto-power

spectra only, dropping the redundant redshift bin indices, and neglecting the last group of terms (which is suppressed by an extra factor of the
order of C� relative to the other terms), we have

T� = C� + Ccal
� − 1

2π
Ccal

� C� + 1

4π

∑
�1 
=0
�2 
=0

(2�1 + 1) Ccal
�1

(
�1 �2 �

0 0 0

)2

(2�2 + 1) C�2 , (A6)

which matches equation (13) in the text.
The following relations involving Wigner 3-j symbols were useful for simplifying the expression for T� and for computing the symbols

numerically:
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(
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