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ABSTRACT
The anomalous lack of large-angle temperature correlations has been a surprising feature of the
cosmic microwave background (CMB) since first observed by COBE-DMR and subsequently
confirmed and strengthened by the Wilkinson Microwave Anisotropy Probe. This anomaly
may point to the need for modifications of the standard model of cosmology or may indicate
that our Universe is a rare statistical fluctuation within that model. Further observations of the
temperature auto-correlation function will not elucidate the issue; sufficiently high-precision
statistical observations already exist. Instead, alternative probes are required. In this work, we
explore the expectations for forthcoming polarization observations. We define a prescription
to test the hypothesis that the large-angle CMB temperature perturbations in our Universe
represent a rare statistical fluctuation within the standard cosmological model. These tests are
based on the temperature-Q Stokes parameter correlation. Unfortunately, these tests cannot
be expected to be definitive. However, we do show that if this TQ-correlation is observed to
be sufficiently large over an appropriately chosen angular range, then the hypothesis can be
rejected at a high confidence level. We quantify these statements and optimize the statistics we
have constructed to apply to the anticipated polarization data. We find that we can construct
a statistic that has a 25 per cent chance of excluding the hypothesis that we live in a rare
realization of � cold dark matter at the 99.9 per cent confidence level.
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1 IN T RO D U C T I O N

In the two decades since the Cosmic Background Explorer (COBE)
first detected the primordial fluctuations in the cosmic microwave
background (CMB) temperature (Wright et al. 1992), and perhaps
even more so in the past decade over which the Wilkinson Microwave
Anisotropy Probe (WMAP) has provided ever more accurate full-sky
maps of those fluctuations (see Komatsu et al. 2011, for example),
the CMB has become a keystone in the remarkable transition of
cosmology from a qualitative to a precision science.

An important element of the role of the CMB in precision cosmol-
ogy has been that the canonical theory of cosmology, inflationary �

cold dark matter (�CDM), makes clear predictions for the statistical
properties of the spherical harmonic coefficients of the temperature
fluctuations,

a�m ≡
∫

Y ∗
�m(θ, φ)T (θ, φ) d(cos θ ) dφ, (1)

� E-mail: cjc5@cwru.edu (CJC); huterer@umich.edu (DH); dschwarz@
physik.uni-bielefeld.de (DJS); glenn.starkman@case.edu (GDS)

which are predicted to be statistically isotropic realizations of inde-
pendent Gaussian random variables of zero mean and with variance
C� depending only on �,

C� = 1

2� + 1

�∑
m=−�

|a�m|2. (2)

In modern discussions of the CMB, the two-point angular power
spectrum, embodied in these C�, plays a central role and is the
source of the remarkable precision of the cosmological parameters
(Komatsu et al. 2011).

Before the COBE era, it was the two-point angular correlation
function of the fluctuations,

C(θ ) ≡ T (n̂1)T (n̂2)|n̂1·n̂2=cos θ , (3)

rather than the angular power spectrum that was of primary inter-
est to astronomers. Statistically, the two-point angular correlation
function is an ensemble average but, in practice, this must be re-
placed by an average over pairs of points separated by an angle
θ , as denoted by the bar over the expression. In fact, the COBE
differential microwave radiometer (COBE-DMR) did report C(θ ),
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though only in their final, four-year paper (Bennett et al. 1996).
When extracted from a full-sky map, both C(θ ) and the C� contain
the same information, albeit in different forms. The same is true
for a function and its Fourier transform; signals are typically most
easily seen in one or the other forms but not both. In the case of the
CMB, C(θ ) and the C� are related by a Legendre series. The C� most
easily show the small angular scale behaviour, microphysics at last
scattering, whereas the C(θ ) most easily shows the large angular
scale behaviour.

As observed by the COBE-DMR, C(θ ) had an unexpected prop-
erty – it was consistent with zero for angular separations between
approximately 60◦ and 160◦. This was duly noted at the time but
mainly remembered today as a low quadrupole. The WMAP team
confirmed the COBE-DMR observation of a lack of large-angle cor-
relation with significantly smaller error bars. In their initial, one-
year release Spergel et al. (2003) phrased the anomaly in terms of a
statistic

S1/2 ≡
∫ 1/2

−1
[C(θ )]2 d(cos θ ). (4)

In the best-fitting �CDM model, the expected value of this statis-
tic is approximately 50 000 (μK)4, whereas the observed value is
approximately 8500 (μK)4 on the full sky, e.g. from the WMAP
independent linear combination (ILC) map,1 with a p-value of
approximately 0.05. Even more striking is that if one considers
only the part of the sky outside a conservative Galaxy cut, then
S1/2 � 1000–1150 (μK)4 and is only ∼1300 (μK)4 in each of the V
and W frequency bands, which are expected to be dominated by the
CMB signal. The cut-sky S1/2 has a p-value of about 2.5 × 10−4,
depending on the precise map (Copi et al. 2009).

We have argued that such absence of the two-point angular cor-
relation is unlikely to result solely from a small quadrupole, or
even a small quadrupole and octopole, and that it instead requires a
‘conspiracy’ among the first several multipoles (Copi et al. 2009).
Such covariance among the C� is likely contrary to the fundamental
prediction of the canonical cosmological model that the a�m under-
lying the C� are independent Gaussian random variables with vari-
ances depending only on �. This is one of a number of large-scale
anomalies that suggest that modifications of the standard models
are required on large angular scales (see Bennett et al. 2011; Copi
et al. 2010, and references therein for further details).

One possible explanation of the absence of large-angle correla-
tions among the CMB temperature fluctuations is that it is merely
a statistical fluke. In this paper, we explore the consequences of
this hypothesis. In particular, since the fluctuations in the CMB
temperature and in its polarization arise largely from the same
source – the gravitational potential – one might have hoped that
a small temperature–temperature (TT) correlation function on large
angular scales would predict a similarly small cross-correlation be-
tween CMB temperature and CMB Stokes parameter Q, or in the
polarization–polarization (QQ) correlation.

Unfortunately, as we shall see, the connection between tempera-
ture and polarization fluctuations is too weak for a general definitive
test of the origin of the vanishing correlation function. However, we
do find that if the S1/2 is small because of a statistical fluke within
�CDM cosmology, then the cross-correlation between temperature
and polarization is unlikely to be large on large angular scales.
Therefore, were we to infer a large value of this cross-correlation

1 The ILC map and all data from the WMAP mission used in this work are
freely available from http://lambda.gsfc.nasa.gov/.

from future data, that would be evidence against a statistical fluke
as an explanation of the vanishing TT correlation.

In this paper, we provide a prescription to follow in order to
test this hypothesis. In Section 2, we describe the construction of
an ensemble of realizations of �CDM that are constrained to re-
semble our observed Universe in the properties of their TT angular
power spectrum and full-sky and cut-sky two-point angular cor-
relation functions. In Section 3, we construct statistics that, like
S1/2 for the TT correlations, can be used to quantify the smallness
of the correlations between temperature and polarization fluctua-
tions. Section 4 contains a discussion of the results of applying the
temperature–polarization cross-correlation statistics to the ensem-
ble of constrained realizations and looks forward to what might
be learned by applying them to future polarization data. Given the
constructed realizations, the values of the statistics are fixed and the
optimal application of them to polarization data can be determined
as discussed in this section. This optimization is independent of po-
larization observations. Finally, Section 5 contains the conclusions.

2 C O N S T R A I N E D R E A L I Z AT I O N S

To study the signature of the lack of large-angle correlations in the
WMAP temperature data on upcoming polarization measurements,
such as from Planck, we require realizations of �CDM consistent
with these large-angle results. For this purpose, we have generated
300 000 such realizations as follows.

(i) In the standard, �CDM model, our Universe is a realization
from an ensemble, the width of which (the cosmic variance) for low-
� information is quite large. However, once measured our realization
can and has been precisely determined. In the work reported here this
information is given in the WMAP reported CT T

� . We are interested
in producing realizations of our Universe as represented by the
WMAP observations, not realizations of the full �CDM model. For
this purpose, we treat the observational errors in the WMAP reported
CT T

� as Gaussian distributed and generate realizations accordingly.
Thus, we generate random CT T

� from Gaussian distributions centred
on the WMAP-reported values. This produces a power spectrum
consistent with that reported by WMAP. Again it is important to
stress that this is a power spectrum consistent with the observation
of our particular realization of the Universe as measured by WMAP,
not a general realization of the best-fitting �CDM model. For this
reason, cosmic variance is not relevant nor do we generate C� from
a χ2 distribution. It is also true that on a partial sky the C� are
slightly correlated. To correct for this we actually use the Fisher
matrix from the WMAP likelihood code without the contribution
from cosmic variance in drawing these CT T

� . In practice, this is a
small correction but has been included for completeness.

(ii) The CT T
� generated in the previous step contain the statisti-

cal information about the power in each mode consistent with the
WMAP observations. For further analysis we need a map, not just
the power spectrum. A map is a particular realization of this power
spectrum. As in �CDM we assume that the modes in the map have
random phases. In practice, this means we choose the aT

�m randomly
on the 2�-sphere such that

1

2� + 1

m∑
�=−m

∣∣aT
�m

∣∣2 = CT T
� , (5)

where the CT T
� in this expression are exactly the values generated

from the previous step. By this construction the resulting sky real-
ization is guaranteed to have a S1/2 consistent with the small value
in the full-sky WMAP ILC map. For each set of CT T

� from the

http://lambda.gsfc.nasa.gov/
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previous step, we generate a single complete sky realization, i.e. a
single map.

(iii) To further be consistent with WMAP observations the S1/2

on the cut sky must also be small. For our realizations we re-
quire Scut

1/2 ≤ 1292.6 (μK)4, the value from the WMAP seven year,
KQ75y7 masked ILC map. This S1/2 value is calculated for a re-
alization by first constructing a map at NSIDE = 64 from the aT

�m

generated above. The pseudo-C� are extracted from this map based
on the region outside the KQ75y7 mask using SPICE (Chon et al.
2004). Finally, S1/2 is calculated using these C� up to �max = 100.

(iv) For temperature realizations that satisfy the cut sky con-
straint, we also generate realizations of the aE

�m. See Appendix A
for a review of the process.

The construction of a set of constrained realizations is the basis for
the prescription we are describing. It will next provide predictions
for the expectations from the observations of the CMB polarization.

3 STATISTIC S

For the temperature auto-correlation, the S1/2 statistic was defined
a posteori (Spergel et al. 2003) to be

S1/2 ≡
∫ 1/2

−1

[
CT T (θ )

]2
d(cos θ ). (6)

Inspired by this we define a comparable statistic for CTQ(θ ), the
two-point angular correlation function between fluctuations in the
temperature and the Stokes parameter Q.

Observable properties of photons can be characterized by the
Stokes parameters. For the CMB the relevant quantities are the
intensity, conventionally represented by the temperature, T, and
the linear polarization given by the Q and U parameters. For the
CMB the circular polarization, represented by the V Stokes parame-
ter, is expected to be zero and not considered further. When working
in real space the natural correlations to construct are amongst these
observables, T, Q and U. These correlations are constructed such
that they only depend on the angular separation along the great circle
connecting each pairs of point on the sky and are thus rotationally
invariant despite the fact that the definition of Q and U depend on the
choice of coordinate axes (Kamionkowski, Kosowsky & Stebbins
1997). When working in harmonic space, it is natural to decompose
the polarization into ‘gradient’ and ‘curl’ modes (Kamionkowski
et al. 1997) alternatively called E and B modes (Zaldarriaga &
Seljak 1997), which are similarly rotationally invariant quantities.
These latter names will be used throughout. Thus, in real space
we will work with the TQ two-point angular correlation function,
CTQ(θ ), which may be written in terms of the two-point angular
power spectrum coefficients, CTE

� .

3.1 STQ statistic

In the case of polarization a priori the optimal range over which to
integrate the correlation function is unknown and will be explored
below so we define the general statistic

STQ(θ1, θ2) ≡
∫ cos θ1

cos θ2

[
CTQ(θ )

]2
d(cos θ ). (7)

As with S1/2 we may calculate this easily in terms of the power
spectrum coefficients, CTE

� . Using (Kamionkowski et al. 1997)

CTQ(θ ) =
∞∑

�=2

2� + 1

4π

√
(� − 2)!

(� + 2)!
CTE

� P 2
� (cos θ ), (8)

Figure 1. Example histogram of the STQ statistic, defined in equation (7),
for constrained (solid, black line) and �CDM (dashed, red line) realizations.
We note that the constrained realizations are more sharply peaked at low STQ

than �CDM which, though peaked at approximately the same value, has a
long tail. The dashed, vertical lines represent the values of STQ for which 99
and 99.9 per cent, respectively, of the constrained realizations have smaller
values.

we may show that

STQ(θ1, θ2) =
∑
�,�′

CTE
� I

TQ
�,�′ (θ1, θ2)CTE

�′ , (9)

where I
TQ
�,�′ (θ1, θ2) are components of a known matrix calculated

in Appendix B. A histogram of the STQ statistic for a particular
choice of θ1 and θ2 is shown in Fig. 1 comparing the constrained
realizations to �CDM.

3.2 sTQ Statistic

Motivated solely by its simplicity and ease of computation, we also
define a new statistic which is linear, rather than quadratic, in the
TQ correlation function

sTQ(θ1, θ2) ≡
∫ cos θ1

cos θ2

CTQ(θ ) d(cos θ ). (10)

As with STQ(θ1, θ2) we may calculate this easily in terms of the
CTE

� ,

sTQ(θ1, θ2) =
∞∑

�=2

CTE
� i

TQ
� (θ1, θ2), (11)

where i
TQ
� (θ1, θ2) are the components of a known vector calculated

in Appendix B. A histogram of the sTQ statistic for a particular
choice of θ1 and θ2 is shown in Fig. 2 comparing the constrained
realizations to �CDM.

4 R ESULTS

The STQ and sTQ statistics defined above have been calculated for
the constrained realizations discussed in Section 2 and for a com-
parable number of realizations of �CDM. In both cases, these have
been calculated from maps produced at NSIDE = 64. Data from the
temperature map outside the KQ75y7 mask and from the seven-
year polarization analysis mask, both provided by WMAP, have
been used. As shown in Figs 1 and 2, the constrained and �CDM
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Figure 2. Example histogram of the sTQ statistic, defined in equation (10),
for constrained (solid, black line) and �CDM (dashed, red line) realizations.
We note that the constrained realizations are more sharply peaked near zero
than �CDM which, though also peaked near zero, has a long tail particularly
to large, positive values. The dashed, vertical lines represent the values of sTQ

for which 99 and 99.9 per cent, respectively, of the constrained realizations
have smaller values.

realizations have most likely values for the STQ and sTQ statistics
at nearly the same value. However, as we also see �CDM pre-
dicts much broader distributions for the two statistics. In particular,
there is a significant probability of producing values larger than the
constrained realizations. This provides a means of testing the hy-
pothesis that our Universe is just a rare realization of �CDM. This
results in a simple but not definitive test.

Consider the case of the STQ statistic as represented
in Fig. 1. For the constrained realizations 99 per cent of
them have STQ(48◦, 120◦) ≤ 1.403 (μK)4 and 99.9 per cent have
STQ(48◦, 120◦) ≤ 2.195 (μK)4. Unconstrained �CDM (with the
best-fitting values of cosmological parameters) randomly gener-
ates realizations with values larger than these 38.6 and 25.6 per cent
of the time, respectively. If observations of the polarization show
our Universe to have a STQ(48◦, 120◦) value larger than these values,
then we can reject the random �CDM realization hypothesis at the
appropriate confidence level. Alternatively, if the STQ(48◦, 120◦)
value is smaller, then no definitive statement can be made; the po-
larization fluctuations would be consistent with the hypothesis that
we live in a rare �CDM realization but do nothing to advance that
hypothesis. This is the main point of the paper.

Similar statements may be made about the sTQ statistic shown in
Fig. 2. It provides similar information as STQ.

We still have freedom to choose the optimal range of angles
over which to evaluate the statistics. We define optimal to mean
the maximum discriminatory power between the distribution of the
statistic in the constrained versus �CDM realizations. For a given
per cent cut-off from the constrained realizations, we wish to find
the angle range [θ1, θ2] that has the maximum fraction of �CDM
realizations above this value.

The results of such a study are shown in Figs 3 and 4 for the
STQ(θ1, θ2) statistic and in Figs 5 and 6 for the sTQ(θ1, θ2) statistic.
The statistics are non-zero only up to the diagonal θ1 = θ2, shown as
the dashed, black line in the figures, but not along it. For this reason,
the contours are truncated at the diagonal. They have been made
symmetric in θ1 and θ2 (by taking |STQ| and |sTQ|) so the results are
shown as identical when reflected through the diagonal. The optimal

Figure 3. Contours for the fraction of �CDM realizations above the
99 per cent value of the constrained realizations from the STQ statistic, de-
fined in equation (7). In the optimal case 38.8 per cent of the �CDM real-
izations have a larger value. In this figure, the results are not defined along
the diagonal (black, dashed line) and have been made symmetric about it by
taking the absolute value of the statistic.

Figure 4. Same as Fig. 3 now for the 99.9 per cent case. Here in the optimal
case 25.6 per cent of the �CDM realizations have a larger value and the full
histograms are shown in Fig. 1.

ranges and fractions of �CDM realizations are listed in Table 1.
We note that the optimal surfaces represented by the contours seen
in the figures are relatively broad, at least in one direction. Due to
this the values of θ1 and θ2 in a neighbourhood of those listed in
Table 1 can be employed with nearly the same efficacy.

5 C O N C L U S I O N S

The absence of two-point angular correlations on large angular
scales in the CMB temperature data is, by now, well established.
It was first measured by COBE-DMR, but became more significant
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Figure 5. Same as Fig. 3 but now for the sTQ statistic, defined in equation
(10). Here in the optimal case 38.5 per cent of the �CDM realizations have
a larger value at the 99 per cent level.

Figure 6. Same as Fig. 5 now for the 99.9 per cent case. Here in the optimal
case 26.4 per cent of the �CDM realizations have a larger value and the full
histograms are shown in Fig. 2.

in the WMAP temperature maps. This absence of correlation is
difficult to accommodate within the standard cosmological model,
especially since it seems to imply covariance among low-� multi-
poles of the CMB. A simple explanation that has been proffered is
that we just live in a rare realization of �CDM that happens to have
a lack of large-angle TT correlations. If so, one might hope that con-
straining �CDM realizations to have low TT correlations at large
angles would have observable consequences for other correlation

Table 1. Optimal angle ranges for the STQ statistic
(7) and sTQ statistic (10). The optimal ranges are de-
termined by finding the maximum fraction of �CDM
realizations with the appropriate statistic above the 99
or 99.9 per cent level of the constrained realizations.
The histograms for the optimal 99.9 per cent ranges
are shown in Figs 1 and 2. The full contours are shown
in Figs 3–6.

Statistic C.L. θ1 θ2 Fraction
(per cent) (deg) (deg) (per cent)

STQ 99 46 122 38.8
99.9 48 120 25.6

sTQ 99 20 177 38.5
99.9 23 174 26.4

functions, such as TQ. These would be the basis for an observational
test of this statistical fluke hypothesis.

In this paper, we have discussed a prescription to follow in order
to test this hypothesis of our Universe being a statistical fluke. The
prescription may be simply stated as follows.

(i) Construct realizations of our Universe consistent with the
observed temperature fluctuations. This means construct sets of aT

�m

and aE
�m consistent with the observed CTT

� and full and cut sky S1/2

as discussed in Section 2.
(ii) Apply the STQ and sTQ statistics as defined in Section 3 to

these constrained realizations.
(iii) Also apply the STQ and sTQ statistics to a comparable num-

ber of best-fitting �CDM realizations and use these to find the
optimal ranges [θ1, θ2] for each statistic. Optimal here means that
the maximum fraction of �CDM realizations fall above the value
at some confidence level in the constrained realization, e.g. the 99
or 99.9 per cent level.

(iv) Given the optimal ranges from the previous step now ap-
ply these particular cases to the observed polarization signal. If the
observations produce values for these statistics larger than that ex-
pected from the constrained realizations, then the statistical fluke
hypothesis can be rejected at the appropriate confidence level. Al-
ternatively, if the values are smaller, then the hypothesis remains
consistent but unproven.

We further note that the optimization in this prescription is inde-
pendent of the polarization observations, or, in fact, whether the
polarization has been observed or not.

Our work is, in spirit, related to Dvorkin, Peiris & Hu (2008).
While they consider observables in the polarization signal for ‘mod-
els’ of three dimensional primordial power modulation that might
explain the breaking of statistical isotropy in the temperature field,
we predict the polarization statistics starting directly from realiza-
tions of �CDM models that are constrained to show the suppressed
TT correlation at large angular scales.

In the work reported here we have generated realizations and
performed the optimization based on the WMAP seven-year data re-
lease. The prescription could be applied to the WMAP nine-year data
release and the results are not expected to differ significantly. We
have also said nothing about applying the statistics to the WMAP re-
ported polarization observations. Unfortunately, the signal-to-noise
ratio in the polarization observations is not yet sufficient to make
meaningful statements. To see this, using the WMAP nine-year re-
ported CTE

� (Hinshaw et al. 2012), we find for the optimal ranges

S
TQ
WMAP(48◦, 120◦) = (1.0 ± 0.8) (μK)4 (12)
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and

s
TQ
WMAP(23◦, 174◦) = (0.8 ± 0.8) (μK)2. (13)

Here the error bars are crude estimates assuming that the reported
CTE

� are statistically independent and the noise is Gaussian. These
assumptions are not justified and a more careful assessment could
be performed using the Fisher matrix. However, given the large
estimated errors such an assessment is not warranted.

We have shown that the prescription described in this work is
not a definitive test of the statistical fluke hypothesis for our Uni-
verse. Nevertheless, by carefully optimizing the statistical measure
of large-angle TQ correlations, we were able to demonstrate that
once good TQ correlation data are available there is a reasonable
probability (over 25 per cent) to reject the statistical fluke hypothe-
sis at the 99.9 per cent confidence level. WMAP data are not up to
this task; however, Planck data should be.
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A P P E N D I X A : PO L A R I Z AT I O N G AU S S I A N
R A N D O M R E A L I S AT I O N S

The generation of correlated Gaussian random variables is a well-
known topic. For use in the CMB this is implemented in HEALPIX

(Górski et al. 2005), for example. Here we review the details relevant
for the generation of our constrained realisations.

In �CDM the temperature and E-type polarization are correlated
as encoded in the power spectrum coefficients CT T

� , CTE
� and CEE

�

from the best-fitting �CDM model. Working in the real spherical
harmonic basis we may generate the spherical harmonic coefficients
as

aT
j =

√
CT T

� ζ1, (A1)

aE
j = CTE

�√
CT T

�

ζ1 +
√

CEE
� − (CTE

� )2

CT T
�

ζ2, (A2)

where ζ 1 and ζ 2 are Gaussian random variables drawn from a
distribution with zero mean and unit variance and the index j refers
to the pair of indices (�, m). To be precise, j takes the values 0 to 2�

and the complex coefficients are constructed as

aT
�m =

{
aT

0 , m = 0
1√
2

(
aT

2m−1 + i aT
2m

)
, m > 0

. (A3)

For our purposes we need to generate constrained realizations
of �CDM so the above procedure must be modified. The steps
discussed in Section 2 lead to the generation of constrained aT

�m. In
other words, we have determined aT

j which by equation (A1) means
we have also determined ζ 1. That is, instead of choosing ζ 1 as a
Gaussian random variable we have used observational constraints
to determine its value and find it by inverting that equation. Since
the temperature and E-type polarization are correlated, this con-
strained temperature realization affects aE

j . The real and imaginary
components of aE

�m may now be generated from (A2) as

aE
j = CTE

�

CT T
�

aT
j +

√
CEE

� − (CTE
� )2

CT T
�

ζ2, (A4)

where ζ 2 is still to be chosen as a Gaussian random variable.

APPENDI X B: D ERI VATI ON O F STATI STICS
F O R M U L A S

B1 STQ(θ1, θ2)

We wish to evaluate STQ(θ1, θ2) as discussed in the text (7). Consider
the simpler case

STQ(x) ≡
∫ x

−1

[
CTQ(θ )

]2
d(cos θ )

=
∑
�,�′

(2� + 1)(2�′ + 1)

(4π)2

√
(� − 2)!(�′ − 2)!

(� + 2)!(�′ + 2)!
CTE

� CTE
�′

×
∫ x

−1
P 2

� (cos θ )P 2
�′ (cos θ ) d(cos θ ). (B1)

To evaluate this expression we need to perform the integral of two
associated Legendre functions, P m

� , of order m = 2,

Ĩ
TQ
�,�′ (x) ≡

∫ x

−1
P 2

� (x)P 2
�′ (x) dx. (B2)

Note that this integral is only defined for �, �′ ≥ 2.
For � 
= �′, we may proceed by directly integrating the associated

Legendre differential equation to find

Ĩ
TQ
�,�′ (x) = 1 − x2

�(� + 1) − �′(�′ + 1)

×
[
P 2

� (x)
dP 2

�′ (x)

dx
− P 2

�′ (x)
dP 2

� (x)

dx

]
. (B3)

For � = �′ more care is required. Starting from the Rodriguez
formula

P 2
� (x) = (1 − x2)

d2P�(x)

dx2
(B4)
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and the recursion relation

x
dP�(x)

dx
= dP�−1(x)

dx
+ �P�(x), (B5)

we can show that

Ĩ
TQ
�,� (x) = 4J

(2)
�−1(x) − 4�(� − 1)J (1)

� (x) + �2(� − 1)2Ĩ�,�(x). (B6)

Here, Ĩ�,�(x) is the equivalent integral over Legendre polynomials
encountered in the definition of S1/2; see appendix A of Copi et al.
(2009) for details. The remaining quantities, J

(1)
� (x) and J

(2)
� (x),

are calculated through integration by parts and use of the recursion
relation to find

J
(1)
� (x) = P�−1(x)P�(x)

+ 1

2

{
1 − x [P�−1(x)]2 − (2� − 1)Ĩ�−1,�−1(x)

}
, (B7)

and

J
(2)
� (x) = J

(2)
�−1(x) + � [P�−1(x)P�(x) + 1] . (B8)

Note that J
(2)
� (x) is defined recursively. We can directly show that

J
(2)
0 (x) = 0.
With these expressions for the integrals we may write

STQ(θ1, θ2) =
∑
�,�′

CTE
� I

TQ
�,�′ (θ1, θ2)CTE

�′ , (B9)

where

I
TQ
�,�′ (θ1, θ2) = (2� + 1)(2�′ + 1)

(4π)2

√
(� − 2)!(�′ − 2)!

(� + 2)!(�′ + 2)!

×
[
Ĩ

TQ
�,�′ (cos θ1) − Ĩ

TQ
�,�′ (cos θ2)

]
. (B10)

This matrix may be precomputed for rapid evaluation of
STQ(θ1, θ2).

B2 sTQ(θ1, θ2)

We wish to evaluate sTQ(θ1, θ2) as discussed in the text (10). We
proceed as above and consider the simpler case

sTQ(x) ≡
∫ x

−1
CTQ(θ ) d(cos θ )

=
∞∑

�=2

(2� + 1)

4π

√
(� − 2)!

(� + 2)!
CTE

�

×
∫ x

−1
P 2

� (cos θ ) d(cos θ ). (B11)

To evaluate this expression we need to perform the integral

ı̃
TQ
� (x) ≡

∫ x

−1
P 2

� (x) dx. (B12)

This integral is straightforward to evaluate starting from the Ro-
driguez formula (B4) and integrating by parts to find

ı̃
TQ
� (x) = �P�−1(x) − (� − 2)xP�(x) + 2(−1)�

− 2

2� + 1
[P�+1(x) − P�−1(x)] . (B13)

With this we may write

sTQ(θ1, θ2) =
∞∑

�=2

CTE
� i

TQ
� (θ1, θ2), (B14)

where

i
TQ
� (θ1, θ2) = 2� + 1

4π

√
(� − 2)!

(� + 2)!

[
ı̃

TQ
� (cos θ1) − ı̃

TQ
� (cos θ2)

]
.

(B15)

This vector may be precomputed for rapid evaluation of sTQ(θ1, θ2).
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