X- and Q-band EPR studies of a series of homologues dinuclear Mn-complexes in varying valence states

Ping Huang¹, Magnus Anderlund¹, Nizamuddin Shaikh¹, Joakim Högblom², Ann Magnuson¹, Jordanos Kiflemariam¹ and Stenbjörn Styring¹

¹Department of Molecular Biomimetics, Uppsala University, Sweden, ²Department of Biochemistry, Chemical Center, Lund University, Sweden

Dinuclear Mn complexes 1, 2 and 3 in varying oxidation states were subjected to X- and Q-band EPR studies. The oxidation states of 1, 2 and 3 are at the Mn2(II,II), Mn2(II,III) and Mn2(III,III) states respectively, associated with the increasing O/N ratio in the first ligand sphere. For each complex, several oxidation states are accessible either via bulk electrolysis, e.g. in 2 the II,II and III,III states, or via photoinduced oxidation in the presence of Ru(II)(bpy)₃ as the photo-sensitizer and an external electron acceptor pentaaminechlorocobalt(III), to obtain the III,IV state in 2.

EPR spectral parameters such as g- and A-tensors are extracted from simulation and are fitted simultaneously to both X- and Q-band spectra. The variations of the hyperfine coupling constants at different oxidation states are compared for each complex. The association between the different ligand spheres and structural changes occurring upon oxidation to higher valence states and the g- and A-tensors is discussed.


Acknowledgements: we acknowledge financial support from the Swedish Energy Agency and the EU NEST adventure project SOLAR-H.