A novel non-heme FeII α-ketoglutarate-dependent chlorinating enzyme in syringomycin E biosynthesis

Frédéric H. Vaillancourt, Jun Yin, and Christopher T. Walsh

Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School

The lipodepsi-nonapeptide syringomycin E (Figure 1A), elaborated as a phytotoxin by Pseudomonas syringae pv. syringae B301D contains a 4-Cl-L-Thr\textsubscript{9} moiety where failure to chlorinate results in a 30 fold drop in biological activity. The proteins SyrB1 and SyrB2 encoded by the biosynthetic cluster are shown to act as a substrate and enzyme pair in which the acyl enzyme L-Thr-S-SyrB1 is chlorinated by SyrB2 (Figure 1B). SyrB2 is a member of the non-heme FeII α-ketoglutarate-dependent enzyme superfamily, and requires O\textsubscript{2} and α-ketoglutarate as well as chloride ions to carry out monochlorination of the -CH\textsubscript{3} group of the L-Thr-S-SyrB1. Chlorination of the L-Thr-S-enzyme was validated by thioesterase-mediated release of L-Thr and 4-Cl-L-Thr, N-derivatization, HPLC separation and mass spectrometry, compared to authentic standards and with \[^{14}\text{C}]-L-Thr and \[^{36}\text{Cl}]- as substrates. Enzymatic halogenation is a novel reaction type for non-heme FeII-dependent enzymes and may be the general mode for biosynthetic halogenation of aliphatic carbons of natural products.

Supported in part by NIH Grants GM 20011 and GM 49338 (CTW), a Merck-sponsored Fellowship of the Helen Hay Whitney Foundation (FHV), and an NSERC Postdoctoral Fellowship (FHV).

Figure 1 A. Structure of syringomycin E. B. Reaction catalyzed by SyrB2