Functional Models of Oxidases: Catalytic Activity of Mn(IV)-Monoradical, Cu(II)-Diradical and Tetracopper(II)-Tetraradical Complexes

Chandan Mukherjee, Thomas Weyhermüller, Karl Wieghardt and Phalguni Chaudhuri*
Max-Planck-Institute for Bioinorganic Chemistry, Mülheim an der Ruhr, Germany
e-mail: chaudh@mpi-muelheim.mpg.de

Copper-containing metalloenzymes Galactose Oxidase (GO), Amine Oxidases (AO) and Phenoxazinone Synthase (PS) catalyze the following biochemical reactions in vivo.

\[
\begin{align*}
RCH_2OH + O_2 & \xrightarrow{\text{GO}} RCHO + H_2O_2 \\
RCH_2NH_2 + O_2 + H_2O & \xrightarrow{\text{AO}} RCHO + NH_3 + H_2O_2 \\
2 \text{CONH}_2\text{NH}_2 + 3/2 O_2 & \xrightarrow{\text{PS}} \text{CONH}_2\text{CONH}_2 + 3 \text{H}_2\text{O}
\end{align*}
\]

The Mn(IV)-monoradical complex (figure) characterized by X-ray crystallography (100 K) and magnetic susceptibility measurements (2-290 K) catalyzes efficiently the aerial oxidation of primary alcohols, amines and 2-aminophenol, thus mimicking the function of the corresponding metalloenzymes. Catalytic activities of some Cu(II)-diradical and tetracopper(II)-tetraradical complexes will also be described.