First Five- and Six-Coordinate Cyanoiron(II) Porphyrinates

Jianfeng Li1, Bruce C. Noll1, Charles E. Schulz2, and W. Robert Scheidt1.

1Department of Chemistry and Biochemistry, University of Notre Dame, 2Department of Physics, Knox College.

The synthesis and structural characterization of the five- and six-coordinate low-spin cyanoiron(II) tetraphenylporphyrinates [K(222)][Fe(II)(TPP)(CN)] and [K(222)][Fe(II)(TPP)-(CN)(1-MeIm)] are reported. The 100 K structure of [K(222)][Fe(II)(TPP)(CN)] is that expected for a low-spin (porphinato)iron(II) species with an average Fe–Np bond distance of 1.985 (7) Å, an axial distance of Fe–C = 1.8779 (12) Å and iron displacement ΔFe = 0.23 Å. This structure is compared with the previously reported structure of low-spin [Fe(II)(OEP)(CS)]. The structure of [K(222)][Fe(II)(TPP)(CN)(1-MeIm)] shows Fe–Np bond distance of 1.989 (4) Å, axial distances of Fe–C = 1.929 (3) Å and Fe–Nl = 2.050(2) Å, and iron displacement, ΔFe = 0.04 Å. These results make for interesting comparisons with the six-coordinate analogues [Fe(II)(OEP)-(CS)(1-MeIm)], [Fe(II)(TPP)(CO)(1-MeIm)] and [Fe(III)(TPP)(CN)(1-MeIm)]. Mössbauer data for [K(222)][Fe(II)(TPP)(CN)] were obtained at 4.2 K in a magnetic field (1, 5, and 9 Tesla) indicating a diamagnetic ground state of the central iron. Support by NIH GM-38401.

ORTEP diagram of [K(222)][Fe(II)(TPP)(CN)], cation is omitted for clarity and Mössbauer spectra of [K(222)][Fe(II)(TPP)(CN)] at 4.2 K and applied magnetic field of 1, 5, and 9 Tesla.